- — e
~ AL OO CONPUTER VISTONTDY —<
HRSSRCHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL
NTELLIGENCE LARB T POGGIO JAN 89 ETL-0529
UNCLASSIFIED DRCA76-85-C-0010

=
m]
-
| |

F/G 1271

] 1is Hi28 25
1.0 = ?!!3‘; Hes
l|| = 7z
i 5
= =2

W22 I e

ETL-0529

AD-A212 489

Parallel Algorithms
for Computer Vision,
Third Year Report

Tomaso Poggio

Massachusetts Institute of Technology
Artificial Intelligence Laboratory

545 Technology Square

Cambridge, Massachusetts 02139

DTIC

EILECTE
January 1989 S SEP 18 1989@
v D

Approved for public release; distribution is unlimited. -

Prepared for:

Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

U.S. Army Corps of Engineers

Engineer Topographic Laboratories
Fort Belvoir, Virginia 22060-5546

89 9 15 041

|

Destroy this report when no longer needed.
Do not recurn {t to the originator.

The findings {n this report are not to be construed as an offficial
Department of the Army position unless 80 designated by other
authorized documents.

The citation {n this report of trade names of commercially available
products does not constitute offf{cfal endorsemen*t or approval of the
use of such products.

“

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This is the third annual report for Contract DACA76-85-C-0010, entitled "Parallel
Algorithms for Computer Vision - Task B," sponsored by the Dafense Advanced Research

Projects Agency (DARPA), and administered by the U.S. Army Engineer Topographic
Laboratories (ETL).

‘The time period covered is the second year that we have had the Connection Machine
(CM) available to us. During the same period of time, we successfully demonstrated
the Vision Machine system processing images and recognizing objects through the inte-
gration of several visual cues. The first version of the Vision Machine system,
which is based on the CM and uses an Eye-Head robot as an input device, is now com-
plete and functional. In parallel with the development of the Vision Machine, we have
also continued to study the performance of alternative, nonconventional architectures
for navigation. The body of this report gives an overview of the results of our
research during the third year of funding. Details can be found in the appendices.
20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
& uNCLASSIFIEDUNUMITED (O SAME AS RPT. CJ omic UsERrs UNCLASSIFIED
22s. NAME OF RESPONSIBLE iNDIVIDUAL 22b. TELEPHONE (Include Area Code) | 22¢. OFFICE SYMBOL
George Lukes (202) 355-2700 CEETL-RI

DD Form 1473, JUN 86 Previous editions are obso/s+s, SECURITY CLASSIFICATION OFf THIS PAGE

UNCLASSIFIED

UNCLASSIFIED
SECURITY CLASSIFICATION OF Thi§ PAGE
Form A
REPORT DOCUMENTATION PAGE OMB NG 0o0e 0188
. 1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/ AVAILABILITY OF REPORT
‘ Approved for public release;
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE Distribution unlimited
. 4 PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)
ETL-0529
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
l Massachusetts Institute (if applicable) U.S. Army Engineer
of Technology Topographic Laboratories
6c ADORESS (City, State, and ZiP Code) 7b. ADDRESS (City, State, and 2IP Code)
Artificial Intelligence Laboratory Fort Belvoir, VA 22060-5546
545 Technology Square
Cambridge, MA 02139
8a. NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
. QRGANIZATION (1f applicable)
Pelense Adyancgd Research 1STO DACA76-85-C~0010
8c ADORESS (City, State, and ZiP Code) 10. SOURCE OF FUNDING NUMBERS
1400 Wilson Boulevard PROGRAM PROJECT TASK WORK UNIT
arlington, VA 22205-2308 ELEMENT NO. | NO. NO. ACCESSION NO. h
l 11. TITLE (Inc/ude Security Classification)
Parallel Algorithms for Computer Vision - Third Year Report
12. PERSONAL AUTHOR(S)
l Tomaso Poggio
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) |15. PAGE COUNT
Annual FROMB/31/87 TO 8/31/88} 1989 January 153
16. SUPPLEMENTARY NOTATION Previous reports in series by T. Poggio and J. Little:
ETL-0456 Parallel Algorithms for Computer Vision January 1987 (covers 8/85 to 8/86) *
ETL-0495 Parallel Algorithms for Computer Vision Second Year Report March 1988 (8/86-8/87
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
. FIELD GROUP SUB-GROUP _*Computer vision . ,
Parallel algorithms and architectures ™

_

PREFACE

This report describes work performed under contract DACA76-85-C-0010
for the U.S. Army Engineer Topographic Laboratories, Fort Belvoir,
Virginia 22060 by Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139, The Contracting Officer's Representative was
Mr. George Lukes.

| Accesion For
bl f

NTIS CHRARY

SO 1as 0
P o 0
Jsthes i
oo e e e
By

Gzt hnon |

Loty Coaes .

) Ao ‘}'f Or
Dt wiee nal ‘

Parallel Algorithms for Computer Vision - Third Annual Report

Contract Number DACAT6-85-C0010
Defense Advanced Research Projects Agency
U.S. Army Topographic Laboratories

Tomaso Poggio
August 31, 1987 - August 31, 1938

Third Year Report

- - * -.

| .

19

TABLE OF CONTENTS

-

. SUNDMARY
1.1 An Overview
1.2 The Vision Machine
2. ACHIEVEMENTS IN THE THIRD YEAR

2.1 The Vision Machine

2.2 Hardware

...... 2.2.2 Our Computational Engine: The Counnection Machine
2.3 Early Vision Algorithms and their Parallel Implementations
...... 2.3.1 Color
e 2.3.2 Texture
2.4 The Integration Stage and MRF
2.5 The Recognition Stage
2.6 Results
2.7 A VLSI Vision Machine
3. OTHER RECOGNITION WORK ON THE CONNECTION MACHINE

1. OTHER ARCHITECTURES
4.1 Architectures for Robot Navigation

. CONCLUSIONS AND FUTURE RESEARCH

(81}

6. RELEVANT TECHNICAL REPORTS AND ABSTRACTS

APPENDICES

1. SUMMARY

1.1 An Overview

This 1s the rhird annual report for Contract DACATE-35-C-0010. entitled
“Parallel Alrorithms for Computer Vision - Task B." sponsored by the De-
fense Advanced Research Projecrs Agence 'DARPA L and adudnistered by
the U.S. Armyv Engineer Topographic Laboratories tETL .

The time period covered by this report is the second vear that we had the
Connection Machine (CM o available ro ns. Dunng the same period of time. we
successtully demonstrated rhe Vision Machine svstem processing iinages and
recognizing »hjects through the integration ot several visual cues. The first
version of the Vision Machine system. which is based on the CM and uses an
Eve-Head rohot as an input device. is now complete and functional. In parellel
with the development of the Vision Machine. we have also continued to study
the performance of alternative, nonconventional architectures for navigation.
The body ot this report gives an overview of the results of our research during
the third vear of funding. Details can be found in the appended publications.

1.2 The Vision Machine

The Vision Machine is a computer svstem that integrates several vision cues
to achieve high performance in nustructured environments for the tasks of
recognition and navigation. It is also a test-bed for our theoretical progress in
low- and high-level vision algorithms. their parallel implementation. and their
integration. As discussed in previous reports, the Vision Machine consists of
a movable two camera Eye-Head system, the input device. and a Connection
Machine. the main computational engine. During the third year of funding,
we developed and implemented several parallel early vision algorithms which
compute edge detection, stereo, motion. texture. and surface color in close
to real-time. We have now integrated these algorithms with an integration
stage based on the technique of coupled Markov Random Field (MRF) models
that provides a cartoon-like map of the discontinuities in the scene. In recent
months we have also obtained a partial labeling of brightness edges in terms
of their physical origin. As planned. we have interfaced the output of our
integration stage with a model-based parallel recognition algorithm. We are
beginning a project together with Electrical Engineering faculty (with non-
DARPA funding) to develop analog and hybrid Very Large Scale Integration
{ VLSI) implementations of the main Vision Machine components.

2. ACHIEVEMENTS IN THE THIRD YEAR

Below 1s a brief overview of our main achievements.

2.1 The Vision Machine

The overall organization of the Vision Machine system is hased on parallel
processing of the images by independent algorithms or modules corresponding
ro ditferent visual cues. Edges are extracted nsing Cannv's edge detector.
The stereo module compntes dispanty from the left and right images. The
motion module estimates an approximation to the optical How from pairs of
unages in a time sequence. [he texture module computes texture attributes
vsuch as density and orlentation of textons. The color algorithm provides an
estiniate of the spectral albedo of the surfaces. independently of the «ffective
dlumeination. that is, illumination gradients and shading effects. as suggested
by Hurlbert and Poggio see Poggio. 1985..

The measurements provided by the early vision modules are typically
noisv. and possibly sparse (for stereo and motion). They are smoothed and
made dense by exploiting known constraints within each process {for example,
that disparity is smooth). This is the stage of approzimation and restoration
of data, performed using a Markov Random Field { MRF) model. Simultane-
ously, discontinuities are found in each cue. Prior knowledge of the behavior
of discontinuities is exploited, for instance the fact that they are continuous
lines. not isolated points. Detection of discontinuities is aided by the infor-
mation provided by brightness edges. Thus each cue, disparity. optical flow.
texture, and color, is coupled to the edges in brightness.

The full scheme involves finding the various types of physical discontinu-
ities in the surfaces, depth discontinuities (extremal edges and blades). ori-
entation discontinuities, specular edges, albedo edges (or marks). and shadow
edges, and coupling them with each other and back to the discontinuities in
the visual cues. So far we have implemented only the coupling of brightness
edges to each of the cues provided by the early algorithm. As we will discuss
later. the technique we used to approximate. to simultaneously detect discon-
tinuities. and to couple the different processes, is based on MRF models. The
output of the system is a set of labeled discontinuities of the surfaces around
the viewer. In our implemented version of the system, we find discontinuities
in disparity. motion, texture. and color. These discontinuities. taken together,
represent a “cartoon’ of the original scene. which can be used for recognition
and navigation (together with interpolated depth, motion, texture. and color
fields. if needed).

2.2 Hardware

2.2.1 The Eye-Head System

Because of the variety of vizual information proce<zed by the Vision Machine.
a zeneral purpose image inpns device s required. This device 1s rhe Eve-Head
SVstell,

The Eve-Head svstem consists of riwvo CCD cameras { "eves”) mounted on
a variable-attitude plarform o “head™ . The appararns allows rhe cameras ro
be moved as a nuit. analogons ro heald movemenr. It also allows rhe lines of
sight of the cameras to be pointed independenrly. analogons ro eve movement.
Each camera is equipped with a motorized zoout lens « F1.4. focal length from
12.5 to 75mm). allowing control of the iris. foens. and tocal length by rhe host
computer (currently a Svmbolics 3600 Lisp Machine;. Other hardware alluws
for repeatable calibration of the entire appararns.

Because of the size aud weight ot the motorized lenses. it would be 1m-
practical to achieve eve movement by pointing rhe camera. lens asseuiblies
directly. Instead. each assembly is mounted rigidly on the head. with eve
movement achieved indirectly. In front of each camera lens is a pair of front
surface mirrors. each of which can be pivoted by a galvanometer also mounted
rigidlv on the head. The murrors are positioned to provide two degrees of free-
dom in aiming the cameras. .\t the expense of a mmore complicated imaging

geometry. this allows for a simpler and faster control system for the eves.

The head is attached to its mount via a spherical joint. allowing head
rotation about two orthogonal axes (pan and tilt). Each axis is driven by a
stepper motor coupled to the drive shaft through a harmonic drive. The latter
provides a large gear ratio in conjunction with verv little mechanical backlash.
Under control of the stepper motors, the head can be panned 180 degrees from
left to right and tilted 90 degrees {from vertical-down to horizontal). Each of
the stepper motors is provided with an optical shatt encoder for shaft position
teedback (a closed-loop control scheme is emploved for the stepper motors).
The shaft encoders also provide an index pulse (one per revolution) which is
tsed for joint calibration in conjunction with wmechanical limit switches. The

latter also protect the head trom damage due to excessive travel.

The overall control system for the Eye-Head system is distributed over
a micre-processor network (UNET) developed at the MIT Al Lab for the
control of vision robotics hardware. The UNET is a "multi-drop” network
supporting up to 32 microcomputers under the control of a single host. The
micros normally function as network slaves. with the host acting as the master.

[this mode. rhe nueros ouly “~peak when spoken to.” responding ro varions
uetwork overations eirher by recerving intormation rcomnnand or orhierswise s or
by transnutting mformation tsuch as status or results). Associated wirth each
zuero on the UNET 15 a local 16-bir bus 1 UBUS)Y, which s totallvy nnder the
control of the mucero. Peripheral devices such as motor drivers. zalvanouleter
Jrivers. and pnlse width modularors . PW A to name a few, can be inrerfaced
ar YIUS level,

At present. nwo tdero-processors are wustalled on rhe Eve-Head UNET:
one for rhe zalvanoweter. and one for both the motorized lenses aud the
~TeDper tlotors, The DrOoCessars currentlyv r’lllphn‘r‘d arve based oot Lo
351, Each of these micros has an assorrment of UBUS peripherals nnder
irs vonirol. Bv wmaking rhese peripherals -uticiently powertul. each niero's
control task can remain <imple and manageable. Code for rhe nucros. writren
11 borh assembly langnage and C. 1s facilitated by a Lisp-based Jdebuzaing

environmient.

2.2.2 Our CTomputational Engine: The Connection Machine

The Connection Machine (CM) is a powertul fine-grained parallel machine
which has proven useful for implementation of vision algorithms. The wa-
chine is described in the appendices (Introduction to Data Level Purallelism.
Thinking Machines Technical Report 86.14). We now have a 16K CM1 and a
SK CM?2 with floating point hardware. Many vision problems must be solved
by a combination of communication modes on the Connection Machine. The
design of these algorithms takes advantage of the underlying architecture of
the machine in novel ways. There are several common elementary operations
nsed in this discussion of parallel algorithms: routing operations. scanning,
and distance doubling.
Routing

Memory in the Connection Machine 1s associated with processors. Lo-
cal memory can be accessed rapidlv. Memory of processors nearby in the
NEWS network can be accessed bv passing it through the processors on the
path between the source and the destination. At present. NEWS accesses in
the machine are made in the same direction for all processors. The router
on the Connection Machine provides parallel reads and writes among pro-
cessor memory at arbitrary distances and with arbitrary patterns. It uses a
packet-switched message routing scheme to direct messages along the hyper-
ciibe connections to their destinations. This powerful communication mode
can be used to reconfigure completely, in one parallel write operation taking
one router cycle, a fleld of information in the machine. The Connection Ma-

[.----n---n-

chine supplies tustructions =0 rliat wany processors can tead from or write
ro rhe ~awe location. but sinee clhese emory reterences can cause ~ignifi-
cant delav, we will nsuaily ounlv consider exclusive read and exclusive write
csrructions, We will wsnadly ot adlow more than one processor to access the
wettory of snoter processor at cane e, The Connection Machine can com-
Dine tiessages af a destinafion S ovarions operarions, snch oas logical AND.
ceebsive ORL cumnarien. and sooaunun oroannnuin,

Soanninyg

The can operations Blelloch, 1957 can be used to <iuplity and speed
1p many sizorthins, Thev drecsls raxe advantiage of the hvpereube connec-
rions underiving rhe ronrer. and can be used to distribure values among rhe
processors and to aggrezate vabies nsing associative operators. Formallv. the
«urn operation takes a binarv as:ociative operator —. with identity 0. and an
ordered set agoaga.. iy o - and returns the set aglay Zapbo. . oiay Sap =

S, .. This operation is -outetimes reterred to as the duta independent
prefr operation Kruskal et.al.. 1935 . Binarv associative operators include
TRLOLIN LI, M., illl(l plll!‘.

The “our -can operations plus-scan. maz-scan, min-scan, and copy-<can
woe implemented in nierocode. and take about the same amount of time as
4 routing cvele. The copy-sean operation takes a value at the first processor
and distribntes it to the other processors. These scan operations can take
segment hita that divide the processor ordering into segments. The beginning
of rach seecment 15 marked by a processor whose sezment bit is set. and the
~can operarions start over again at the beginning of each segment.

The scanoperations also work using the NEWS addressing scheme. termed
grid-scans. These compute the sum and quickly find the maximum,. copy. or
number values along rows or columns of the NEWS grid. For example. for
cach pixel grid-scans can be nsed ro find the sum of a square region with width
2m - 1 centered at the pixel. This sum is computed by the following steps.
First. a pius-scan accumulates partial sums for all pixels along the rows. Each
pixel then gets the result of the scan from the processor m in front of it and m
behind it: the difference of these two values represents the sum. for each pixel.
of its neighborhood along the row. We now execute the same calculation on
the colnmns. resulting in the sum. for each pixel. of the elements in its square.
The whole process only requires a tew scans and routing operations. and runs
in time 1ndependent of the size of m. The sununation operations are generally
nseful to acenmulate local support in many of our algonthms. such as stereo

and motion.

Distance Doubling

Another important primitive operation is distance doubling Wyllie. 1979:
Lim. 1986 . which can be used o compute the erfect of any binarv. associative
ApeLaTtion. as in scan. un processors linked in a st or a ring For example.
1310g maz. distance Jdoubling can fnind the extremum of a field conrained in
the processors. Using message-passing on rhe router. distance doudling can
propazate the extreme value ro ail processors in rhe ring of V processors :n
Orlog NV steps. Each step tnvoives swo +#nd operations. Lvpicailv, rthe value
to be maxiuuzed is chosen *o he rhe hvpercube-address. At termination. each
Drocessor i the mng xnows rhe label of “he maximm processor in rhe ming.
llerealrer rermed *he orincipul orocessor. This labels ail connected processors
ardunieiv. and gowminates a Processor as the representative for the -»ntire et
o connecred processors. At the same time. the distance from -he principad
orocesor can de computed in 2ach processor. Figure 4 shows +he propagarion
of vaites in a ring of =1ght processors. Each processor inmitiailv. at step 1),
nas “he address of the next proce sor in the ring, and a value which is o he

*A step. a processor knows :he addresses

maximized. A: the rermination ol the .
of processors 2 -1 away and rhe maximum of all values within 27! processors
awav. In rhe =xample. the maximum value .ias been propagated to all eight

processors in log 3 = J steps.

2.3 Early Vision Algorithms and their Parallel Implementation

We have described the early vision algorithms and their implementation in a
previous report | see appendices. The MIT Vision Machine. Proceedings of the
Image Understanding Workshop. 1988). Although we have dore substantial
work 10 improve some of these algorithms most notably stereo), we will not
{escribe rhis work here: details can be found in the appended papers. We will
describe. however. two new aigorithms for color and rexture.

2.3.1 Color

he color algorithm -hat we have implemented is a very preliminary version
of a module that should find the boundaries in the surface spectral reflectance
funcrion. that is. discontinuities in the surface color. The algorithm relies on
he idea of effective :llumination and on the singlc source assumption. both
introduced by Hurlbert and Poggio see Poggio et.al.. 1983..
The single source assumption states that the illumination may be sepa-
rated into two cumponents. one depender.t only on wavelength and one de-
pendent only on spatial coordinates. and generally holds for illumination from

a ~ingle light source. It allows us to write the image irradiance »juution for a

Lambertian world as

IV = M Eir.uipvrig (5t

where [V is the image irradiance in the vih <pectral channelt v = red.green. blue,
2Yeroyis the surface speciral reflectance cor albedor. and Ete. y) s the effec-
rive dbmunanion which absorbs thie spatial vararions of rhe lunanation and
rhe shading due to the 3D shape of surfaces 1 4% 1s a cousrant tor each channel
and depends onlv on the lununant). A snaple <egmenration algorithi 1s rhen

obtained by considering the eqration

[7‘ 1\." I‘)l
Ir =19 krpr — iipd

which changes only when p" or p7 or both change. Thus H, which is piece-

Hor oy = (61

wise constant. has discontinuities that mark changes in the surface albedo
indeprendently of changes in the etfective tllumination.

The quantitv Hir. gy 1s defined almost everywhere. but is typically noisy.
To counter the etfect of noise, we exploit the prior information that H should
bHe plecewise constant with disconrinuities that are themselves continuous.
non-intersecting lines. As we will discuss later. this restoration step is done
nsing a MRF model. This algorithm works only under the restrictive assump-
rion that specular reflections can be neglected. Hurlbert 1988 discusses in
more derail the scheme outlined here and how it can be extended to more

general conditions.

2.3.2 Texture

The texture algorithm is a greatly simplified parallel version of the texture al-
gorithu developed by Voorhees and Poggio 1987 . Textureis a scalar measure
computed by summation of texton densities over small regions surrounding ev-
ery point. Discontizuities in this measure can correspond to occlusion bound-
aries, or to orientation discontinuities, which cause foreshortening. Textons
are computed in the im:.. - by simple approximation to the methods presented
in Voorhees and Pogx '~ 387 . For this example, the textons are restricted
to blob-like regions witnou* regard to orientation selection.

To compute textons .. image is first filtered by a Laplacian of Gaus-
sian filter at several diferent scales. The smallest scale selects the textural
rlements. The Laplacian of Gaussian image is then thresholded at a non-zero
value to find the regions which comprise the blobs identified by the textons.
The result is a binary image with non-zero values only in the areas of the

10

blobs. A simple swmmation connts the dewsirv of blobs. rhie portion of rhe
sunmation region covered he Wlahetn o ~uad] area sarronnding each point.
This operation etfectivelv measures rhe dewsir of hlobs at the fine scale. while
alzo counting the presence of blobhs cansed by {arze oceinsion edues at rhe
bonndanes of rextured regions. Contrase bonndaries appear as blobs iu the
Laplacian of Gansstan image. To remove ther efecr, we nse the Laplacian of
Ganssian tnage at a ~holiedy coarser ~cades Db cansed v the rexrre ar the
fine scale do not appear at rhis coarser <caie. vhile the conrrast honndaries,
as well as all other blobs at coarser scales. vemwain. This coarse hlob image
alters the fine blobs: blob< ar rhe conrser seaie coe removed trom the Ane <eale
image. Then sunuunation. wherher wirh a <iiple scan operation or Ganssian
filtering. can determine rhe blobh densirv at ~ie Hne scale onlv. This i1~ one ex-
ample in which multiple <patial scales are w<ed i1 the preseur ttpleuentation

of the Vision Machine.

2.4 The Integration Stage and MRF

Whereas it 1s reasonable to assume that combiuing the evidence provided by
multiple cues. for example. edge detection. stereo, and color, shonld provide a
mtore reliable map of the <nrfaces than anv ~ingle cue alone. it is not nhvions
how this integration can be accomplished. The various physical processes
that contribute to image formation. surface depth, surface ortentation. alhedo
i Lambertian and zpecular component). iihuinarion. are coupled to the image
data. and therefore to each other. through the itnaging equation. The conpling
is, however. difficult to exploit in a robust manner ~ince it depends criticallv on
the reflectance and imaging models. We argue that the coupling of the image
data to the surface and illumination properties is of a more qualitative and
robust sort at locations in which image brightness changes sharply and surface
properties are discontinuous. in short. at edges. The intuitive reason for this is
that at discontinuities, the coupling between ditferent physical processes and
the image data is robust and qualitative. For examiple. a depth discoutinuity
usually originates a brightness edge in the image. and a motion boundary
otten corresponds to a depth discontinuity rand a bnghtness edgel in the
image. This view snggests restoring the data provided by early modules or
rhe following integration scheme. The results provided by stereo. motion. and
other visual cues are rvpically noisy and sparse. We can improve them by
exploiting the tact that they should be smooth. or even piecewise constant
ias in the case of rhe albedo). berween discontinuities. We can exploit a
priors information about generic properties of the discontinuities themselves.

for instance. that they are usually continuous and non-intersecting.

N

11

The idea. then. is to detect discontinuities 1 each cue. such as depth.
P

simnltaneonsly with the approxinion of rthe deprh dare, The detection of

dizcontinwties 1s aided by intormation ou rhe presence and tvpe of discontinu-
ittes in the surfaces and surface properties vsee Figure 1. which are coupled

to the bhriviituess edges 1n the 1mage.

Notice that reliabie detection of Jiscoutinuities is eritical for a vision
~vstenl. since discontinulties are otren the most nportant locations in a scene:
Hdepth discontinuities, for example. norwally correspond to the boundaries of
an object or an vbject part. The tlea 1= rhus to conple ditferent cues throngh
thetr discontinuities and to nse iformation from ~everal vues dmultaneously
to help refine the initial estimation vt discoutinuities. which are rvpically noisv

and sparse.

How can this be done” We have chiosen ro use the machinery ot Markov
Random Fields (MRFV. initially suggested for nnage processing bv Geman
and Geman 1934 . This technique and onr integration scheme are described

in detail in the appended papers.

. A few disclaimers are in order at this point. We have chosen to use MRF
models because of their generality and theoretical attracriveness. This does
' not nnply that stochastic algorithis must be used. For example. in the cases
in which the MRF model reduces to standard regularization Marroquin et.al..
l 1937 and rhe data are given on a regular grid. the MRF formulation leads

not onlyv to a purely deterministic algorithm. but also to a convolution filter.

We are now beginning to define deterministic algorithms that are either
equivalent toa MRF formulation or are a good approximation to the stochastic
Monte Carlo algorithms. More specifically., we expect that the probabilistic
formulation of a MRF is in a sense too general, and therefore too inefficient.
Remember that MRF models are uite general: for example, regularization
can be regarded from a probabilistic point of view as an instance of a MRF.

2.5 The Recognition Stage

The output of the integration stage provides a set of edges labeled in terms of
physical discontinuities of the surface properties. These are a good input to
model-based recognition algorithms. We have interfaced the integration stage
of the Vision Machine as implemented so far with the Cass algorithm. We have
used only discontinuities for recognition: we plan to also use the information
provided bv rhe MRFs about the surface properties between discontinuities.

12

2.6 Results

We have used the Vision Machine ro compute a “cartoon” of visible sceues
containing a vartety of ubjecrs snch as model planes and office scenes. This
carroon of discoutinuities has been nsed ro recoznize objects of which mod-
ols were avalable, The whole svstemn works 1o parallel on rhe Connection
Machine. Exaniples of rhe cnpnr of *hie integration stage are ~hown in rhe
appended papers. We have uor ver publizhed onr results on recognition.

2.7 A VLSI Vision Machine

Onr Vision Machine consists mostly of specialized software mnning on a gen-
eral purpose computer. the Connecrion Machine, This 15 a good system tor
the present stage of experimentration and developuient. Now that we have
pertected and tested rhe algorithms and the overall svstem. it makes sense
to compile the software in silicon in order ro produce a faster. cheaper. and
smaller Vision Machine. We are presently starring a project with Electrical
Engineering taculty to use analog and digital VLI rechinology ro develop sume

initial chips as a first srep toward this goal.

LI B B I N N N N E-l NN EEEEERE N

13

3. OTHER RECOGNITION WORK ON THE
CONNECTION MACHINE

Willie Lim has tiuplemented au ob ject maodel aquisition and recognition scheme
using the Conneerion Machine o Jdo parallel library search. The dowmain was
the “rocks wworbl” o worbl o siodd nararally oceonrriug objecrs wwhich are not
easily desertbed nsing conveurional rechnignes. The obvions application for
such a viston svstem is landmark recocuition i ourdoor navigarion,

Tlhe kev tlea 1 this work was 1o wodel irregndariy shaped objecrs as i
qualitative silhonerre graph. Silhonerte features invariant ro small changes
it viewpoint. such as points of maxinpun enrvature. are wsed to parse rhe
sithounettes into chunks. which are then described qualitativelv. During model
ayuisition. the ~vstem directed a mobile camera tmonnted on rhe end of a
robot manipulator) to rake new images tiom views with maximmnm nucertaintyv
on the frontier ot the partially constructed model. The resulting models are
organized on a qualitative Gnassian sphere. During matrching of an nnknown
object, all previouslv built models are matched simultaneonsly on the Counec-
tion Machine. Each node in cach model graph is assigned a nnigqne processor.
Each node tries ro match trself against features in the input description and
propagates wmafching constraints ro its neighbors in its own model graph.
Thus matching happens in bounded time regardless of the size of the librarv.

up to the capaciry of the CAL

.

14

1. OTHER ARCHITECTURES

Mosr ot our work has tocused on the Connection Machine. as we had oniginally
proposed. in order ro establisli rhe strength and nnliry of fine-grained parallel
architecres for vision within a navigation rask. Thauks ro rhe in-house
wcorx of Roduey Brooks on the Jobile Robor, we Lave tonnd 1 mmreresring
ror conrrast the fine-zrained archirecture of e CLID warh rthe snbsnprion

arcuiteetare nsed by Brooks.

4. 1 Architectures for Robot Navigation

Previonsiv, we had begun work wsing the subsiunprion architecture for nav-
tzarion. in which perception was carried out by other processes. During rhe
last vear. we also applied subsnunprion directly to hulding a visnal perception
svarem for a mobile robot.

Tie subsumprion architecrure 1s a naturallv parallel svstem which wses
Lessave vassing between slmiple computational elements to localize decixions
ro preciselv the relevant aspects of the world. We extended this architecture
by adding visual pathways where image data could be sent between the com-
putational elements. The computational elements were augmented to tnclude
array processing primitives.

Two implementations of this architecture were built. One used 3-bit mi-
croprocessors to do real-tine object recognition in depth images. The outputs
were nsed to direct a robot with an onboard arm to locate and retrieve known
objects in a dynamically changing cluttered environment. The other imple-
mentation simulated a parallel machine on a Lisp Machine. and did real-time
processing of five frames per second from a standard black and white cam-
era. enabling the robot ro follow corridors and locate and follow slow moving
objecrs. The first test used a pipeline of simple 3-bit microprocessors (6300s)
with a cycle time of onel nicrosecond to achieve real-time vision in depth
1maeges.

The complete system including a laser light striper. a parallel processor.
and a manipulator mounted on a mobile robot. The light striper uses a stan-
dard black and white CCD camera with an appropriate filter. Odd interlaces
were discarded to allow for stabilization of the mechanical svstem. while each
even interlace, every one-thirtieth of a second. provided a horizontal scanline
of disparitv. In this way. every 1.067 seconds a 32-high by 256-wide dispanty
image was collected. As each scanline was collected. it was expanded to a kilo-
byte by the addition of three temporary bytes to each data byte. The image
was represented evervwhere by these expanded scanlines. As each scanline

15

was collected. it was piped into the first in a serles of udcroprocessors, Each
microprocessor had SK of EPROM. and 12% bvtes ot ~eratech RAM onboard.
A 2-Kbyte RAM associated with each processor held the two most recent
scanlines of the image. The processors were connected 1u a tree. rooted at
the lizht striper. and everv 33.3 milliseconds a scanline of Jdata was shifted
thronzh rhe svstem in a 0.5 nuilisecond burst. This {err each processor wirh
rinze tor ahont thirry mstractions per pleet of the oncined deorly tmage,

The recoguition problem 15 partitioned mto a wunber of simple opera-
tions on the image. cach of which was mapped to a processor. Earlv in rhe
tree of processors. the operations were geueric ce.g. deprli-tased segmenta-
tion), but towards the leaves of the tree. the operations were uite specific
te.z.. <hape matching for a specific shape). The implemented version used a
tree of processors six deep. giving a one-fifth second latency between comple-
tion of rhe collection of the image and the parallel output from a set of leat
nodes of ubject identifications and localizations. The system has been used
to reliablv locate and grasp target objects in cluttered dvnamically changing
eIVITONnLeIt 5.

In the secoud test of this approach. a single black and white CCD camera
was monnted on a mobile robot base. The 1mages were subsampled down to

32 by 28. and a new image was taken every 0.2 seconds.

A reliable system for approaching and following moving objects was built
by first building a simple but unreliable svstem, then adding a second simple
and also potentially unreliable system. to make an overall reliable system.
Once this initial reliable system had been built, it was easy to add on top of
1t a few more computational modules and have it do a quite different task:
drive along corridors.

The simplest system compared successive images using pixel differences
an binarv thresholding to detect areas of motion. The program servoed the
robot base so that the centroid of this motion area was lined up in a particular
spot in the images. Servoing the base in this way causes the robot to chase the
detected motion. This system is very unreliable due to noise in the images.
and the fact that as the robot moves. the whole image appears to be in motion
given the simple motion test used. The next piece to be added to the system
15 a heterogeneous blob detector and a region colorer. The blobs are matched
to the motion region. and the one with the biggest overlap is used to compute
the centroid to be servoed towards. In addition, a binary image consisting of
just tiis Liob is latched to replace the motion image for comparison in the
next iteration. The result is rthat now the system uses the motion detector to
provide a seed to be tracked over time. To improve the performance of the
system. a set of subsumption architecture finite state machines control the

16

hysteresis of switching between blob and wotion matching. When the robnot
i> chasing an object. it may lose it for a tew trames. in which case wmorion
15 re-invoked to trv to find a new rarzet to chase: the usnal outcome 1s that
the old rarget is detected azain. To an exrernal observer. rhe robot (loes not
appear to hesitate at all: it is simply pursuing a woving object. A few more
~ubsumption processes take care of special cases, such as aceidentally pursiing
a wall and running into 1t.

This vision svstem worked 1in a complerely unsrructured environment.
In most images taken by the robot. there was a rarget object on a dirtv
Hoor reflecring highlights form the overlicad lizhrs. Tle svstem was then
augmented turther to carry out a quite diferent rask. Bv raking a homgenons
region grower and feeding it into the network at the appropriate point. the
robot was made to pursue the floor in frout of it effectively making ir wander
down corndors.

The conclusion we have reached is that the two architectures can be com-
plementary for navigation. The simple subsumption architecture can underlie
-imple reflexive behaviors of the insect tvpe. For more -ophisticared tasks
involving planned visual navigation and recognition. however. the power of a
parallel supercomputer is barely sutficient. given the complexity of the rasks.

17

5. CONCLUSIONS AND FUTURE RESEARCH

Onr project. a parallel Vision Machine. has rhe zoal of developing a ~vsiremn
for integrarng early vision modules and compnrting a robust description of rhe
disconrimuties of the surfaces and ot their phvsical properties that can be nsed
Sar recoonirion rasks, Dnrng rlos Tasr vear oo have warertaced the ourpur
ot cerr intecration stage vith a parailel model-based vecozninion algorithm,
As we o deseribed earlier. the Vision Machine svstem 1utegrates several vision
ces ro acuteve high perfortance 1 unsrenctired ecuvironinent <. mainlv tor
secounition tasks. It is also a tool for resting our rheoretical progress in vision
aleorithms, rheir parallel implementation and rheir intezration. The Vision
MMachine ar presents consists of a movable two-camera Eve-Head system - the
inpnt ddevice ~ and a SK CM2. We are improving rhe parallel early vision
alzorithims which compute edge detection. stereo. motion. texture and <urface
color 1n close to real-time. The integration stage is based on the technique of
ronpled Markov Random Field models. and leads to a cartoon-like map of the
discontinuities in the scene. with a partial labeling of the brightness edges in
rerms of their physical origin. In the last year. we have intertaced rhe output

of our intezration stage with a parallel model-based recognition algorithm.
The Vision Machine will evolve in several parallel directions:

e Improvement and extensions of its early modules,

o Improvement of the integration and recognition stages (recognition is
discussed later).

o Use of the eye-head svstem in an active mode during recognition task by
developing appropriate gaze strategies,

o Use of the results of the integration stage in order to improve the op-
eration of early modules such as stereo and motion by feeding back the

preliminary computation of the discontinuities.

Two goals will occupy most of our attention. The first one is the devel-
opment of the overall organization of the Vision Machine. The system can
be seen as an implementation of the inverse optics paradigm: it attempts
to extract surface properties from the integration of image cues. It must be
stressed that we never intended this tframework to imply that precise surface
properties such as dense. high resolution depth maps. must be delivered by
the system. This extreme interpretation of inverse optics seems to be com-
mon. but was not the motivation of our project. which originally started with
the name Coarse Vision Machine to emphasize the importance of computing
qnalitative, as opposed to very precise. properties of the environment.

18

Our second main goal in rhe Vision wmachine project will be Machine
Learning. In particular. we have heann to explore ~timple learning and esti-
mation technignes tor vision tasks. We have succeded in svnthetizing a color
algonith from exawpies Hurlbert and Pogwio, 1933 0 and in developing a
rechinigne ro perform ansupervised learning Sanger. 1938 of orhier simple
viston alzorithms <uch as snaple versions of thie compuration of textae and
srereo. Inaddinion. we Liave nsed learmng rechuigues ro perforny inrearion
rasks. suech as labeling rie svpe of discontinuities in a scene. We have also
heunn to explore the connecrions between recent approaches to learning. such
wa nenral nertworks. generte algorithms. and elassical methods in approcdo-
lon “heory snch as splines. Bavesian technianes and Markov Randour Field
aodels. We have identified <ome common properties of all these approacties
and ~ome of the common limitations. such as sample complexity. As a conse-
(ence. we now believe rhat we can leverage our expertise in approxiiation
rechulques tor the problem of learning 1n machine vision. Our future theo-
rerical and computational stiudies will examine available learning techniqres.
‘hieir properties and limirarions and develop new ones for the tasks of cusly
vision. for the iutegration ~rage and for object recognition. The algorithius
will be resred wirh the Vision Machine system and eventually incorporated
into ir. We will also pav attention to parallel network implementations of
these algorithms: for this subgeal we will be able to leverage the work we
are now doing in developing analog VLSI networks for several of the com-
ponents of the Vision Machine. Towards the goal of achieving much higher
flexibility in the Vision Machine we propose to explore (a) the synthesis of
vision algorithms from a set of instances and (b) the refinement and tuning
of preprogrammed algorithms, such as edge detection, texture discrimination.
motion, color and calibration for stereo. We will also develope techniques
to estimate parameters of the integration stage. Much of our effort will be
focused on the new scheme for visual recognition of 3D objects. whose kev
component 1s the automatic learning of a large database of models. We aim
to develop a prototype of a flexible vision system that can. in a limited way,
learn trom experience.

In the following, we ontline some of the other directions of future devel-
opment.

o Labeling the physical origin of edges: computing qualitative surface at-
rributes.,

o Saliency. grouping. and segmentation.

e T Junctions: their detection and use in grouping.

o A VLSI Vision Machine.

e Learning and parameter estimation.

19

6. RELEVANT TECHNICAL REPORTS

Avarwal. AL L. Nekludova. and W, Lin. ~A Parallel ot/og n) Algorithm for
Finding Connected Components :u Planar Immages.™ Proc. Intl. Conf.
on Paralis] Processing, T33-T36. Luoner, 1987,

Berrero, Moo T, Poowio. and V. Torze. “[I1-Posed Problenss 1 Early Vision”
Proceedings of the [EEE. T6. 369-339. 1933, Also Artificial Intelligence
Memo 309 Center for Biological Information Processing Paper 25, Mas-
~rchiserrs Insritare of Technologs Apnl. 1987,

Bleiloch. G. “Scans as Primitive Parallel Operations.” Proc. Intl. Conf on
Purallel Processing, 555-362. Augnst. 1937,

Blelloch. G.. and J. Little “Parallel Solutions to Geometric Problems on the
Scan Model of Computation.”™ drfificial Intelligence Laboratory Memo
252, Massachusetts [nstitute ot Technology, Cambridge. MA. 1937,

Blelloch. G.. and C. Rosenbery. “Network Learning on the Connection Ma-
chine.™ Proc. Intl. Joint. Conf on Artificial Intell.. 323-326. August,
1087,

Brooks. R.. and JI. Connell. ~Navigation Without Representation.” Artifi-
ctal Intelligence Laboratory Technical Report. Massachusetts Institute of
Technology. Cambridge, MA, in progress.

Brooks. R.. and J. Connell. “Asynchronous Distributed Control Svstems for
a Mobile Robot.™ Proc. S.P.ILE.. 727. October, 1986.

Brooks. R.. A. Flvan. and T. Marill. “Self Calibration of Motion and Stereo
Vision for Mobile Robot Navigation.” Artificial Intelligence Laboratory
Memo 98,. Massachusetts Institute of Technology, Cambridge. MA. Au-
gust. 1037,

Connell. J. “Task Oriented Spatial Representation for Distributed Systems.”
Artificial Intelligence Laboratory Technical Report, Massachusetts [nsti-
tute of Technology, Cambridge, MA. September. 1986.

Gamble. E.. and T. Poggio. "Visual Integration and Detection of Discontinu-
ities: The Key Role of Intensity Edges.” Artificial Intelligence Laboratory
Memo 970/ Center for Biological Information Processing Paper 027. Mas-
sachusetts Institute of Technology. September. 1987.

Gillett. W. “Issues in Parallel Stereo Matching.” Master's Thesis. Dept. of
Brain & Cognitive Sciences, Massachusetts [nstitute of Technology. Cam-
bridge. MA. 1988.

Geiger. D.. and T. Poggio. “An Optimal Scale for Edge Detection.” Artificial
Intelligence Laboratory Memo 1078. Massachusetts Institute of Technol-
ogv, Cambridge. MA. September. 1988.

20

Geiger. D.. and T. Poggio. “Level Crossings and the Panum Area.” In: Pro-
reedings IEEE Computes Socicty Worlshop on Computer Vision. IEEE,
Miami. FL. 211-214. Devcewmber. 1037,

Geizer. Do and T. Poggro. “An Opumal Scale tor Edge Detection.” In: Pro-
cerdings of the International Joint Conference on Artificial Intelligence,
Vol 20 Milan. Iralve 943- 748, 1937,

Grimson. W ~Combinatorics of Oblecr Recognition in Cluttered Environ-

Artiperal Intelligence. 1o appear. 1989,

wents Using Constrained Search
Also Artificial Intelligence Laboratory Memo 1019, Massachusetts [nsti-
rite of Technology, Cambridge, MAL 1038,

Grimson. W. "On the Recounition of Curved Objects in Two Dimensions.”
[EEE Pattern Analysis and Machine Intelligence, to appear. 1938, Also
4L Memo 983. Massachuserrs Institute of Technology. Cambridge. MA.
1939.

Grimson. W. “On the Recognition of Parameterized 2D Objects.” Interna-
tronal Journal of Computer Vision. accepted for publication. 1338, Also
Artificial Intelligence Luaboratory Memo 985, Massachusetts Institute of
Technology. Cambridge. MA. 1988.

Griumson. W. "The Combinatorics of Object Recognition in Cluttered En-
vironments Using Constrained Search.™ Proe. Second Intl. Conf. on
Computer Vision, Tarpon Springs. FL. December. 1988.

Grimson. W. "Deternuning Object Pose for Grasping and Manipulation.”™ In:
Vision and Action: The Control of Grasping. M. Goodale (ed.). Ablex
Publishing Corporation. 1038,

Grimson. W.. and D. Huttenlocher. “On the Sensttivity of the Hough Trans-
forin for Object Recognition.” Proc. Second Intl. Conf on Computer
Vision. Tarpon Springs. FL. December. 1983. Also AIL Memo 1044.
Massachusetts Institute of Technology, Cambridge. MA. May, 1988.

Grimson, W., and T. Lozano-Pérez. "Localizing Overlapping Parts by Search-
ing the Interpretation Tree.” [EEE Pattern Analysis and Machine Intel-
ligence, 9, 469-482, 1987. Also Artificial Intelligence Laboratory Mermo
841. Massachusetts Institute of Technology, Cambridge. MA. 1987.

Heel. J. "Dvnamical Systems and Motion Vision.” Artificial Intelligence Lab-
oratory Memo 1037, Massachusetts Institute of Technology. Cambridge.
MA. Apnl. 1988,

Hillis. W.D. The Connection Machine. The MIT Press. Cambridge, MA.
193%3.

Horswill. I.. and R. Brooks. “Situated Vision in a Dynamic World: Chasing
Objects.” Proceedings of A4 AL 796-300. August. 1988.

Huribert, A and T. Pouvio. “Svathesizing a Color Algorithm trom Exam-
ples.™ Setenee. 27, 110-1200 Taunary, 19353,

Hurtenlocher. D.. and S. Ullman. ~Object Recognition Using Alignment.”
Proc. Intl. Conf. on Computer Viseon, 102-111. June. 1987,

Lee. H. "Estimating the [lnuunant Color trom the Shading of a Smoorh Snr-
Yoo Aenfieral Intetligence Luboratory Memo 1068, Massachuzerrs In-
~care of Technolowy, Cambrides, MA LD Auwiar, 1933,

L. Wo Shape Recognirnion tn rhe Rocks World.™ Ph.D. Thesis. Dept. of
Elecrrical Enmineering aud Compnter Setence. Massachusetts [nsriture of
[oehnologv, Cambridee, MA O Mav, 19383,

Lizi. W. ~Uiing Oceluding Contours for Object Recogition.” Proe. Image
Understanding Workshop, Defense Advanced Research Projects Agency,
0914, Los Aneeles. CA. Febrmarv. 1937,

Lim. W. »Fast Algonithns tor Labelling Connected Components in 2-D Ar-
ravs.” TMC Technical Report NA86-1. Thinking Machines Corp.. Cam-
bridge, MA. December. 1936,

Lime Woo AL Acarwal. and L. Nekludova, »A Fast Parallel Algorithm tor La-
Heling Connected Components.” TUC Technical Report N486-2, Think-
iz Machines Corp.. Ciuubridge. MA. December, 1936.

Li-rie J.. G Blelloch, and T. Cuss. "How to Program the Counection Machine
tor Computer Vision.” Proc. Workshop on Comp. Arch. for Pattern
Anal. and Mach. Intell.. Ocrober. 1987.

Li-tie J.. G, Blelloeh. and T. Cass. ~Parallel Algorithins for Computer Vision
ou rthe Connection Machine.” Proc. Intl. Conf. on Computer Vision,
537-591. June. 1937,

Lir-le J.. G. Blelloch. and T. Cass. ~Parallel Algorithms for Computer Vizion
s the Connection Machine.” Proc. Image Understanding Workshop,
Detense Advanced Research Projects Agency. 628-638. Los Angeles. CA,
February. 1087,

Lirtle. J.. H. Biilthoff. and T. Poggio. “Parallel Optical Flow Computa-
tion.” Proc. Image Understanding Workshop. Defense Advanced Re-
search Projects Agencv. 913-920. Los Angeles. CA. February. 1987.

Lirtle. J.. and T. Poggio. “The Vision Machine Project: Integrating Early Vi-
sion Modules.”™ In: Proccedings 1988 Spring Symposium Sertes - Physical
and Biological App.vaches to Computational Vision. AAAT Syvmposinum
Series, Stanford, CA. 35-37. March 1938.

Mahoney. J. lmage Chunking: Defining Spatial Building Blocks for Scene
Apalysis.” Master's Thesis, Dept. of Electrical Engineering and Com-
puter Science, Massachusetts Institnre of Technology. Cambridge. MA.

w
ta

1355 .-\.1,\,'() _—ll'Hﬁ:)llli [Hft‘“ig}c‘n(r‘ L4Lf)¢)/':Lf«rl':/ Tm'/'ulzuu' Rt'pur't L)Sl}, :.[;15-

cachuseits Tastitire of Technoloov, Canbaordoe. 3TN Tamaary, 1987,

CMarsoquin. S0 S Mitter, and T. Pogeio. “Probabilistie Solarion of I11-Posed

Probleuis 1 Cowpirational Viston,™ J. droer Jiar. dssoc.. 82, 76-39,

Y

“leores Bt T Powo, “Represenrarion of Prooerries o Mulrilaver Net-

works cabarracrto lnternationar Serral cerwors Socety Aunual Meet-

g, Boston, Septemwber 6-100 1035

Docoion 1 aad the sratft of rhe Ariificial L lheence Liborarorv, MIT

Prouressin Understanding luwages.” [u: Proceedengs of the Imaye Unider.
canding Workshop, L. Bauman 1edoil Setence Applicarions [uternarional
Corporation. MeLean, VAL 1933,

Coornoc Toand rhe staf of the AL Laboratory, “MIT Proure<sin Understand-
g maves”™ Ine Procecdings of the Inaye Understanding Wo bshop. L.
Bauman .. Science Applications International Corporation. McLean.
VAL L0,

Possio, T, Learning. Regulanization awd Splines™ fabstract). Internarional
Nearal Network Societv Annual Meering, Boxron, MA. Septrember 8-10.
JRARS

Poguio. T. “Computer Vision.” In: Buologieal and Artificial Intelligence Sys-
tems, E. Clementi and S. Chin. eds.. ESCOM Science Publishers. Leiden.
The Netherlands. 471-423. 1988,

Pougio. T.. E. Gamble. and J. Little. “Parailel Iutegratuon of Vision Mod-
ales.”™ In: Proceedings 1988 Spriny Sumposium Series - Physical and Bi-
ologrical Approaches to Computational Vision. AAAI Svmposium Series.
Stanford. C'A. 38-95. March 1983.

Pormo, T E. Gawmble, and J. Little. “Parallel [ntesration of Vision Modules.”
Science, 242, 436-440 fand cover). October 1933,

Pogaio. T.. J. Little. E. Gamble. W. Gillett. D. Geiger. D. Weinshall. M. Vil-
lalba, N. Larson. T. Cass. H. Bulthotf. M. Drumbheller. P. Oppenheimer.
W. Yang. and A. Hurlbert. “The Vision Machine.” In: Proceedings of the
Image Understanding Workshop. L. Bauman (ed.). Science Applications

[nternational Corporation. MeLean, VAL 1083,

Povuio. T.o V. Torre. and C. Koch., "Computational Vision and Regulariza-
tion Theory.” In: Readings in Computer Vision. M.A. Fischler and O.
Fizschein ieds.). Morgan Kaufinann Publishers. Los Altos. CA. 1987,

Poggio. T.. H. Voorhees, and A. Yuille. ~A Regularized Solution to Edge
Detection.” Journal of Complerity. 4. 106-123. 1988.

Povos Too W Yang. and Vo Torre. “Opricad Flow: Computational Properties
sl Networkss Biolowead and Awslow™ The Newran as o Computational
[Tt Proceedings, King's Colleae, Canbridae, UKL Tnne 1038,

Ul Sooand AL sha'ashua, “Sreweonrad sadency: The Dereenion of Glob-
aliv Saliewr Srrvctures Using a Locally Connecred Nerwork.™ Artifieral
Dt ilvge o Didboratory Mewo Jdofo Dlassachinserrs [usrionre of Technols
coevs Cranorsdae, ATAL Ty 10ss,

Viersi A awd T Poovia, “Azainsr Onanntanve Oprieal Flow™ Proe. Intl

4

Confoor Computer Viscon, 1710300 Inne. 1337,

Virss Al ared T Povaeros ~Oalitariee [nformarion o che Oprical Flow.”

D O

Proc. Iniage Understanding Wortshop, Defense Advance] Rescarch Projecrs

Azencv, 325-3340 Lo~ Anveles. C AL Febrare, 1957,

Viorhees, H. “Finding Texture Boundaries in Images.” Master's Thiesis. Dept.
ot Eleernieal Engineering and Computer Seience. Mas<achusetrs Institnte
of Techinology, Cambridge. MA. June. 1987, Also Arttpieal Intelilgencee
Lohoratory Technical Report 968, Nassachuserts [nstitute of Technology,
Cambridee. MAL June, 1987,

Voorhees, Hooand T. Poggio. ~“Computing Texture Boundaries trom hnawes.”
Nuture, 333, 364-367. 1088,]

Voorhees, Hoo and T, Poggio. “Detecting Textons and Texture Boundaries
'n Natural Images.” Proc. Intl. Conf. on Computer Vision, 250-25%,
Washingron, DC. June. 1987,

Voorhees, Hoo and T, Poggio. “Detecting Blobs as Textous in Natural [n-
awes.” Proco Image Understanding Workshop. Defense Advanced Re-
~earch Projecrs Agency. $92.399. Los Angeles. CA. Februarv, 1987.

Weinshall. D. “Seeing "Ghost™ Solutions in Stereo Vision.” Artificial Intells-
gence Laboratory Memo 1073 Center for Biological Information Process-
imgMemo 44, Massachusetts Institute of Technology. Cambridge. MA.
September. 1988.

Weinshall. D. "Qualitative Depth and Shape from Stereo in Agreement with

Psvchophysical Evidence.” Artificial Intelligence Laboratory Memo 1007 Cen-

ter for Biological Information ProcessingMemo 28. Massachusetts Insti-

rte of Technology, Cambridge. M A, December. 1957,

APPENDICES

f—_—

Camera mage overlayed with discontinuines in texture (yelow),

(ongge).mdmdepth

green). The discondnuities are computed from

vision modules colx led with brighmess Mt data using

Mzrkovrmdomﬁeld: The unuon of the

tnuities produces a “cartoon” which

is used by a parallel recognition algonithm. Scepage436 [T. Poggio et al., Arufical
Inte!hg:ywe Laborarory, Massachuserrs Insgtute of Technology, Cambndg:, MA

02139)

Parallel Integration of Vision Modules

‘?. PocGalio, E. B. GAMBLE, J. J. LITTLE

Computer algorithms have been developed for several early vision processes, such as
edge detection, stereopsis, motion, texture, and color, that give separate cues to the
distance from the viewer of three-dimensional surfaces, their shape, and their material
properties. Not surprisingly, biological vision systems still greatly outperform comput-

er vision programs. One of the keys to the reliability, flexibility, and robustness of

biological vision systems is their ability to integrate several visual cues. A computation-
al technique for integrating different visual cues has now been developed and
implemented with encouraging resuits on a parallel supercomputer.

LTHOUGH IT IS REASONABLE THAT
combining the evidence provided by
ultple visual cues—for example,
edge derection, stereo, and color—should
provide a more reliable map of the objects in
a visual scene chan any singie cue alone, it is
not obvious how to accomplish this integra-
gon. One of the most important constraints
for recovering surface from each
of the individual cues is that the physical
processes underlying image formation, such
as depth, orientaton, and reflecrance of the
surfaces, change slowly in space (adjacent
points on a surface are not at random
depihs, for instance). Standard regulariza-
uon (1-3), on which many examples of the
carly vision algonithms are based, caprures
those smoothness properties well. The phys-
ical properties of surfaces, however, are
smooth almost everywhere, but not at dis-
continuities. Reliable detection of discontin-

436

uities of the physical properties of surfaces is
critical for a vision system, since discontinui-
ties are often the most important locations
in a scene: depth discontinuities, for exam-
ple, normally correspond to the boundaries
of an object. Thus, the output of each vision
module has to be smoothed and interpolat-
ed (that is, “filled-1n”), since it is noisy and
often sparse; at the same time discontinui-
ties must be detected.

Discontinuities can alsc be used cffective-
ly to fuse information between different
visual cues (4-7) and the image dara [see
also (8-10)). For instance, a depth discont-
nuity usually produces a sharp change of
brighthess in che image (usually called a
brightness edge); and a moton boundary
often corresponds o a depth discontinuity
(and a brightness edge) in the image. The
idea is thus to couple different cues—sterco,
modon, texture, color, and motion—to the

image data (in particular, to the sharp
changes of brightness in the image) through
the discontinuiges in the physical properties
of the surfaces (see Fig. 1) [for earlv work in
this dicecdon, see (11)]. The final goal of
this approach is to use information from
several cues simultancously to refine the
inidal estimadon of surface discontinuities.
In dhus report we will describe a firse step in
this direction that combines brightness
edges with discontinwdes in cach of the
modules separartely.

How can this be done? We have chosen to
use the machinery of Markov random fields
(MRFs), initally suggested for image pro-
cessing by Geman and Geman (12) [for
alternative approaches see (13-16)]. Consid-
er the prototypical probiem of approximat-
ing a surface (f) given sparse and noisy data
(depth data), on a regular two-dimensional
lattice of sizes (Fig. 2). We first define the
prior probability of the class of surfaces in
which we are interested. The probability of a
certain depth ar any given site in the lartce
depends only upon neighboring sites (the
Markov property). Because of the Clifford-
Hammersley theorem, the prior probabilicy
has the Gibbs form:

P(f)a_lz,e-U(f)IT (h

where Z is 2 normalization constant, T is a

Aruficial Inteligence Laboratory, Massachusers [nsa-
tute of Technology, Cambndge, MA 02139.

SCIENCE, VOL. 42

1___.“

THE MIT VISION MACHINE

T. Poggio, J. Little, E. Gamble, W. Gillett, D. Geiger
D. Weinshall, M. Villalba, N. Larson, T. Cass, H. Biilthoff,
M. Drumbheller, P. Oppenheimer, W. Yang, and A. Hurlbert

The Artificial Intelligence Laboratory
Massachusetts Institute of Technology

ABSTRACT

We describe the MIT Vision Machine, our goals
and achievements to date. The Vision Machine is o
computer system that attempts to integrate several m-
sion cues to achieve high performance in unstructured
environments for the tasks of recognition and navige-
tion. It is also a test-bed for our theoretical progress
in early vision algomithms, their parallel implementation
and their integration. Th. Vision Machine consists of ¢
movehle two-camera Eye-Head system ~ the input device
- and a 16K Connection Machine - our masn compu-
tational engine. We have developed and implemented
several parallel early wmsion algorithms which compute
edge detection, stereo, motion, texture and surface color
in close to real-time. The integration stage is based on
the technique of coupled Markov Random Field models,
and leads to a cartoon-like map of the discontinuities
in the scene, unth a partial labeling of the brightness
edges in terms of their physical origin. We wnll inter-
face the output of our integration stage with availsble
recognition algomithms. We are also beginning to study
analog and hybrid VLSI implementations of the Vision
Machine main components.

1. Introduction: The Project and Its
Goals

Computer vision has developed algorithms for sev-
eral early vision processes, such as edge detection, stere-
opsis, motion, texture, and color, which give separate
cues as to the distance from the viewer of three dimen-
sional surfaces, their shape, and their material proper-
ties. Biological vision systems, however, greatly outper-
form computer vision programs. It is increasingly clear
that one of the keys to the reliability, flexibility and ro-
bustness of biological vision systems in unconstrained
environments is their ability to integrate many different

visual cues. For this reasop we are developing a Vision
Machine System to explore the issue of the integration of
early vision modules. The system also serves the pur-
pose of developing parallel vision algorithms since its
main computational engine is a parallel supercomputer
- the Connection Machine.

The ides behind the Vision Machine is that the
main goal of the integration stage is to compute a map of
the visible discontinuities in the scene, somewhat similar
to a cartoon or a line-drawing. There are several reasons
for this. Firstly, experience with existing model-based
recognition algorithms suggest that the critical problem
in this type of recognition is to obtain a reasonably good
map of the scene in terms of features such as edges and
corners. The map does not need to be perfect — human
recognition works with noisy and occluded line draw-
ings — and of course it cannot be perfect. But it should
be significantly clesner than the typical map provided
by an edge detector. Secondly, discontinuities of surface
properties are the most important locations in a scene.
Thirdly, we have argued [Poggio, 1985] that discontinu-
ities are ideal for integrating information from different
visual cues.

It is also clear that there are several different ap-
proaches to the problem of how to integrate visual cues.
Let us list some of the obvious possibilities:

1) There is no active integration of visual processes.
Their individual outputs are “integrated” at the
stage at which they are used, for example by a
navigation system. This is the approach advocated
by Brooks {1987). While it makes sense for auto-
matic, insect-like, visuo-motor tasks such as track-
ing a target or avoiding obstacles (e.g., the fly's
visuo-motor system [Reichardt and Poggio, 1976)),
it seems quite unlikely for visual perception in the
wide sense.

——— e ———————————————————————

- -'-'

2) The visual modules are so tightly coupled that it
is impossible to consider visual modules as sepa-
rate, even in a first order approximation. This view
is unattractive on epistemological, engineering and
psychophysical grounds.

3) The visual modules are coupled to each other and
to the image data in a parallel fashion - each pro-
cess represented as an array coupled to the arrays
associated with the other processes. This point of
view is in the tradition of Marr’s 2 1-D skeich, and
especially of the “intrinsic images” of Barrow and
Tenenbsum {1978]. Our present scheme is of this
type, and exploits the machinery of Markov Ran-
dom Field (MRF) models.

4) Integration of different vision modalities is taking
place in a task-dependent way at specific locations
- not over the whole image — and when it is needed
~ therefore not at all times. This approach is sug-
gested by psychophysical data on visual attention
and by the idea of visual routines [Ullman, 1984; see
also Hurlbert and Poggio, 1986; Mahoney, 1987].

We are presently exploring the third of these ap-
proaches. We believe that the last two approaches
are compatible with each other. In particular, visual
routines may operate on maps of discontinuities such
as those delivered by the present Vision Machine, and
therefore be located after a parallel, automatic integra-
tion stage. In real life, of course, it may be more a mat-
ter of coexistence. We believe, in fact, that a control
structure based on specific knowledge about the prop-
erties of the various modules, the specific scene and the
specific task will be needed in a later version of the
Vision Machine to overview and control the MRF in-
tegration stage itself and its parameters. It is possible
that the integration stage should be much more goal-
directed that what our present methods (MRF based)
allow. The main goal of our work is to find out whether
this is true.

The Vision Machine project has a number of other
goals. It provides a focus for developing parallel vision
algorithms and for studying how to organize a real-time
vision system on a massively parallel supercomputer. It
attempts to change the usual paradigm of computer vi-
sion research over the past years: choose a specific prob-
lem, for example stereo, find an algorithm, and test it
in isolation. The Vision Machine allows us to develop
and test an algorithm in the context of the other mod-
ules and the requirements of the overall visual task -
above all visual recognition. For this reason, the project
is more than an experiment in integration and parallel
processing: it is a laboratory for our theories and algo-
rithms,

Finally, the goal of the Vision Machine project is no
less than the ultimate goal of vision research: to build
a vision system that achieves human-level performance.

2. The Vision Machine System

The overall organization of the system is shown in
Figure 1. The image(s) are processed through inde-
pendent algorithms or modules corresponding to differ-
ent visual cues, in parallel. Edges are extracted using
Canny’s edge detector. Stereo computes disparity ro=
the left and right images. The motion module estimates
an approximation to the optical flow from pairs of im-
ages in a time sequence. The texture module computes
texture attributes (such as density and orientation of
textons {see Voorhees, 1987|). The color algorithm pro-
vides an estimate of the spectral albedo of the surfaces,
independently of the effective illumination, that is, illu-
mination gradients and shading effects, as suggested by
Hurlbert and Poggio see Poggio, 1985).

The measurements provided by the early vision
modules are typically noisy and possibly sparse (for
stereo and motion). They are smoothed and made dense
by exploiting known constraints within each process (for
instance, that disparity is smooth). This is a stage of ap-
prozimation and restoration of data, performed by using
a Markov Random Field model. Simultaneously, discon-
tinuities are found in each cue. Prior knowledge of the
behavior of discontinuities is exploited, for instance, the
fact that they are continuous lines, not isolated points.
Detection of discontinuities is aided by the information
provided by brightness edges. Thus each cue - dispar-
ity, optical flow, texture, and color - is coupled to the
edges in brightness.

The full scheme involves finding the various types of
physical discontinuities in the surfaces — depth discon-
tinuities (eztremal edges and blades), orientation dis-
continusties, specular edges, albedo edges (or marks),
shadow edges - and coupling them with each other and
back to the discontinuities in the visual cues, as illus-
trated in Figure 1. So far we have implemented only
the coupling of brightness edges to each of the cues pro-
vided by the early algorithm. As we will discuss later,
the technique we used to approximate, to simultane-
ously detect discontinuities, and to couple the different
processes, is based on MRF models. The output of the
system is a set of labeled discontinuities of the surfaces
around the viewer. In our implemented version of the
system we find discontinuities in disparity, motion, tex-
ture, and color. These discontinuities, taken together,
represent a “cartoon” of the original scene which can
be used for recognition and navigation (along with, if

:—

Line
R L
~'{ continuous
processes

Figure 1: Block Diagram of the Vision Machine

needed, interpolated depth, motion, texture and color
fields).

The plan of the paper is as follows, We will first
review the present hardware of the Vision Machine: the
Eye-Head system and the Connection Machine. We will
then describe in some detail each of the early vision al-
gorithms that are presently running and are part of the
system. After this, the integration stage will be dis-
cussed. We will analyze some results and illustrate the
merits and the pitfalls of our present system. The last
chapter will discuss a real-time visual system and sotwe
ideas on how to put the system into VLSI circuits of
analog and digital type.

3. Hardware
3.1. The Eye-Head System

Because of the variety of visual information pro-
cessed by the Vision Machine, a general purpose image
input device is required. Such a device is the Eye-Head
systemn. Here we discuss its current and future configu-
rations.

3.1.1. The Present

The Eye-Head system (Figure 2a) consists of two
CCD cameras (“eyes”) mounted on a variable-attitude
platform (“head”). The apparatus allows the cameras
to be moved as a unit, analogous to head movement. It
also allows the lines of sight of the cameras to be pointed
independently, analogous to eye movement. Each cam-
era is equipped with a motorized zoom lens (F1.4, focal
length from 12.5 to 75mm), allowing control of the iris,

iy

focus, and focal length by the host computer (currently
a Symbolics 3600 Lisp Machine). Other hardware allows
for repeatable calibration of the entire apparatus.

Because of the size and weight of the motorized
lenses, it would be impractical to achieve eye move-
ment by pointing the camera/lens assemblies directly.
Instead, each assembly is mounted rigidly on the head,
with eye movement achieved indirectly. In front of each
camera lens is a pair of front surface mirrors (Figure
2b), each of which can be pivoted by a galvanometer
also mounted rigidly on the head. The mirrors are posi-
tioned to provide two degrees of freedom in aiming the
cameras. At the expense of a more complicated imag-
ing geometry, this allows for a simpler and faster control
system for the eyes.

The head is attached to its mount via a spherical
joint, allowing head rotation about two orthogonal axes
(pan and tilt). Each axis is driven by a stepper motor
coupled to the drive shaft through a harmonic drive.
The latter provides a large gear ratio in conjunction
with very little mechanical backlash. Under control of
the stepper motors, the head can be panned 180 degrees
from left to right, and tilted 90 degrees (from vertical-
down to horizontal). Each of the stepper motors is pro-
vided with an optical shaft encoder for shaft position
feedback (a closed-loop control scheme is employed for
the stepper motors). The shaft encoders also provide
an index pulse (one per revolution) which is used for
joint calibration in conjunction with mechanical limit
switches. The latter also protect the head from damage
due to excessive travel.

The overall control system for the Eye-Head system
is distributed over a mic:o-piocessor network (UNET)
developed at the MIT Al Lab for the control of vi-
sion/robotics hardware. The UNET is a “multi-drop”
network supporting up to 32 micros, under the control of
a single host. The micros normally function as network
slaves, with the host acting as the master. In this m~de
the micros only “speak when spoken to”, responding to
various network operations either by receiving informa-
tion (command or otherwise) or by transmitting infor-
mation (such as status or results). Associated with each
micro on the UNET is a local 16-bit bus (UBUS), which
is totally under the control of the micro. Peripheral de-
vices such as motor drivers, galvanometer drivers, and
pulse width modulators (PWMs), to name a few, can
be interfaced at this level

At present two micro-processors are installed on
the Eye-Head UNET: one for the galvanometer and one
for both the motorized lenses and stepper motors. The
processors currently employed are based on the Intel
8051. Each of these micros has an assortment of UBUS

_

L. Lenses
M. Mirrors
G. Galvonometers (2 of 4)
S. Camera lines-of-sight

Figure 2: The Eye-Head System

peripherals under its control. By making these periph-
erals sufficiently powerful, each micro’s control task can
remain simple and manageable. Code for the micros,
written in both assembly language and C, is facilitated
by a Lisp-based debugging environment.

3.1.2. The Future

A single enhancement remains for the Eye-Head
system. Currently, a Symbolics Lisp Machine acts as
the host processor for the UNET. Soon an intermedi-
ate real-tizne processor will be placed between the Lisp
Machine and the UNET, acting as master of the latter.
The real-time processor (referred to as the DSP, being
based on a Digital Signal Processor chip) will relieve the
Lisp Machine of all the UNET protocol tasks, as well as
various low-level, real-time control tasks for which the
Lisp Machine is ill-suited. Among the tasks envisioned
for the DSP is optimal position estimation of moving
targets from motion data.

3.2. Our Computational Engine: The Connec-
tion Machine

The Connection Machine is a powerful fine-grained
parailel machine which has proven useful for implemen-

tation of vision algorithms. In implementing these algo-
rithms, several different models of using the Connection
Machine have emerged, since the machine provides sev-
eral different communication modes. The Connection
Machine implementation of algoritbms can take advan-
tage of the underlying architecture of the machine in
novel ways, We describe here several common, elemen-
tary operations which recur throughout the following
discussion of paralle] algorithms.

3.2.1. The Connection Machine

The CM-1 version of the Connection Machine
[Hillis, 1985] is a parallel computing machine with be-
tween 16K and 64K processors, operating under a single
instruction stream broadcast to all processors. It is a
Single Instruction Multiple Data (SIMD) machine; all
processors execute the same control stream. Each pro-
cessor is a simple 1-bit processor, currently with 4K
bits of memory. There are two modes of communica-
tion among the processors: first, they are connected
by a mesh into a 128 x 512 grid network (the NEWS
network, so-called because the connections are in the
four cardinal directions), allowing rapid direct commu-
nication between neighboring processors, and second,
the router, which allows messages to be sent from any

N

processor to any other processor in the machine. The
processors in the Connection Machine can be envisioned
as being the vertices of a 16-dimensional hypercube (in
fact. it is a 12-dimensional hypercube; at each vertex of
the hypercube resides a chip containing 16 processors).
Each processor in the Connection Machine is identified
by its hypercube address in the range 0. .. 65535, impos-
ing a linear order on the processors. This address de-
notes the destination of messages handled by the router.
Messages pass along the edges of the hypercube from
source processors to destination processors. The Con-
nection Machine also has facilities for returning to the
host machine the result of various operations on a field
in all processors; it can return c¢he global maximum,
minimum, sum, logical AND, and logical OR of the field.

To allow the machine to manipulate data structures
with more than 64K elements, the Connection Machine
supports virtual processors. A single physical proces-
sor can operate as a set of multiple virtual processors
by serializing operations in time, and partitioning the
memory of each processor. This is otherwise invisible to
the user. Connection Machine programs utilize Com-
mon Lisp syntax, in a language called *Lisp, and are
manipulated in the same fashion as Lisp programs.

3.2.2. Powerful Primitive Operations

Many vision problems must be solved by a com-
bination of communication modes on the Connection
Machine. The design of these algorithms takes advan-
tage of the underlying architecture of the machine in
novel ways. There are several common, elementary op-
erations used in this discussion of parallel algorithms:
routing operations, scanning and distance doubling.

Routing

Memory in the Connection Machine is associated
with processors. Local memory can be accessed rapidly.
Memory of processors nearby in the NEWS network
can be accessed by passing it through the processors
on the path between the source and the destination.
At present, NEWS accesses in the machine are made
in the same direction for all processors. The router
on the Connection Machine provides parallel reads and
writes among processor memory at arbitrary distances
and with arbitrary patterns. It uses a packet-switched
message routing scheme to direct messages along the
hypercube connections to their destinations. This pow-
erful communication mode can be used to reconfigure
completely, in one parallel write operation taking one
router cycle, a fleld of information in the machine. The
Connection Machine supplies instructions so that many
processors can read from the same location or write to
the same location, but since these memory references

processor-number = [0 1 2 3 4 5 6 7]
A =[5 1 3 4 3 9 2 6]
Plus-Scan(A) =[5 6 9 13 16 25 27 33)
Max-Scan(A) =(5 55 5 5 9 9 9]

Figure 3: Examples of Plus-Scan and Maz-Scan.

can cause significant delay, we will usually only con-
sider exclusive read, exclusive write instructions. We
will usually not allow more than one processor to access
the memory of another processor at one time. The Con-
nection Machine can combine messages at a destination
by various operations, such as logical AND, inclusive
OR, summation, and maximum or minimum.

Scanning

The scan operations [Blelloch, 1987 can be used
to simplify and speed up many algorithms. They di-
rectly take advantage of the hypercube connections un-
derlying the router, and can be used to distribute values
among the processors and to aggregate values using as-
sociative operators. Formally, the scan operation takes
a binary associative operator @, with identity 0, and
an ordered set [a0,41,...,dn-1], and returns the set
(a0,(30 B ay),...,(a0 D ay & ... ® an—1)]. This oper-
ation is sometimes referred to as the data independent
prefiz operation (Kruskal et.al., 1985]. Binary associa-
tive operators include minimum, mazimum, and plus.
Figure 3 shows scans using mazimum and plus.

The four scan operations plus-scan, maz-scan, min-
scan and copy-scan are implemented in microcode and
take about the same amount of time as a routing cycle.
The copy-scan operation takes a value at the first pro-
cessor and distributes it to the other processors. These
scans operations can take segment bits that divide the
processor ordering into segments. The beginning of each
segment is marked by a processor whose segment bit is
set, and the scan operations start over again at the be-
ginning of each segment (see Figure 4).

The scan operations also work using the NEWS ad-
dressing scheme, termed grid-scans. These compute the
sum, and find the maximum, copy, or number values
along rows or columns of the NEWS grid quickly.

For example, grid-scans can be used to find for each
pixel the sum of a square region with width 2m + 1 cen-
tered at the pixel. This sum is computed using the
following steps. First, a plus-scan accumulates partial
sums for all pixels along the rows. Each pixel then gets
the result of the scan from the processor m in front of
it and m behind it; the difference of these two values
represents the sum, for each pixel, of its neighborhood

“ . .
o

processor-number = [0 1 2 3 4 5§ 6
A =[5 1 3 4 3 9 2
SB (segment bit) =1 0 1 0 0 0 1
Max-Scan(A, SB) =[5 5 3 4 4 9 2
Copy-Scan(A, SB) =[5 5 3 3 3 3 2
Plus-Scan(A, SB) = [0 5 6 3 7 10 19
Min-Scan(A, SB) =[MX5 1 3 3 3 3

Figure 4: Examples of Segmented Scan Operations.

along the row. We now execute the same calculation on
the columns, resulting in the sum, for each pixel, of the
elements in its square. The whole process only requires
a few scans and routing operations, and runs in time
independent of the size of m. The summation opera-
tions are generally useful to accumulate local support
in many of our algorithms, such as stereo and motion.

Distance Doubling

Another important primitive operation is distance
doubling (Wyllie, 1979; Lim, 1986), which can be used to
compute the effect of any binary, associative operation,
as in scan, on processors linked in a list or a ring. For ex-
ample, using maz, doubling can find the extremum of a
field contained in the processors. Using message-passing
on the router, doudling can propagate the extreme value
to all processors in the ring of N processors in O(log N)
steps. Each step involves two send operations. Typ-
ically, the value to be maximized is chosen to be the
bypercube-address. At termination, each processor in
the ring knows the label of the maximum processor in
the ring, hereafter termed the principal processor. This
labels all connected processors uniquely and nominates
a processor as the representative for the entire set of
connected processcrs. At the same time, the distance
from the principal can be computed in each processor.
Figure 4 shows the propagation of values in a ring of
eight processors. Each processor initially, at step 0, has
the address of the next processor in the ring, and a value
which is to be maximized. At the termination of the i**
step, a processor knows the addresses of processors 2' +1
away and the maximum of all values within 2! pro-
cessors away. In the example, the maximum value has
been propagated to all 8 processors in log8 = 3 steps.

4. Early Vision Algorithms and their
Parallel Implementation

7]
6]
0]
6]
2]
2]
2]

4.1. Edge Detection

Edge detection is a key first step in correctly identi-
fying physical changes. The apparently simple problem
of measuring sharp brightness changes in the image has
proven to be difficult. It is now clear that edge detection
should be intended not simply as finding “edges” in the
images, an ill-defined concept in general, but as mea-
suring appropriate derivatives of the brightness data.
This involves the task-dependent use of different two-
dimensional derivatives. In many cases, it is appropri-
ate to mark locations corresponding to appropriate crit-
ical points of the derivative such as maxima or zeroes.
In some cases, later algorithms based on these binary
features — presence or absence of edges - may be equiv-
alent, or very similar, to algorithms that directly use the
continuous value of the derivatives. A case in point is
provided by our stereo and motion algorithms, to be de-
scribed later. As a consequence, one should not always
make a sharp distinction between edge-based and inten-
sity based algorithms: the distinction is more blurred
and in some cases, it is almost a matter of implementa-
tion.

In our current implementation of the Vision Ma-
chine, we are using two different kinds of edges. The
first consists of zero-crossings in the Laplacian of the
image filtered through an appropriate Gaussian. The
second consists of the edges found by Canny’s edge de-
tector. Zero-crossings can be used by our stereo and mo-
tion algorithms (though we have mainly used Canny's
edges at fine resolution). Canny’s edges (at a coarser
resolution) are input to the MRF integration scheme.

Zero-Crossings

Because the derivative operation is ill-posed, we
need to filter the resultant data through an appropri-
ate low-pass filter {Torre and Poggio, 1985]. The filter
of choice (but not the only possibility!) is a Gaussian
at a suitable spatial scale. An interesting, simple imple-
mentation of Gaussian convolution relies on the bino-
mial approximation to the Gaussian distribution. This
algorithm requires only integer addition, shifting, and
local communication on the 2-D mesh, so it can be im-
plemented on a simple 2-D mesh architecture (such as
the NEWS network on the Connection Machine).

The Laplacian of a Gaussian is often approximated
by the difference of Gaussians. The Laplacian of a Gaus-
sian can also be computed by convolution with a Gaus-
sian followed by convolution with a discrete Laplacian;
we have implemented both on the Connection Machine.
To detect zero-crossings, the computation at each pixel
need only examine the sign bits of neighboring pixels.

«_

Canny Edge Detection

The Canny edge detector is often used in image un-
derstanding. It is based on directional derivatives, so it
has improved localization. The Canny edge detector on
the Connection Machine consists of the following stepa:

¢ Gaussian smoothing
¢ Directional derivative
s Non-maximum suppression

o Thresholding with hysteresis.

Gaussian filtering, as described above, is a local oper-
ation. Computing directicnal derivatives is also local,
using a finite difference approximation referencing only
local neighbors in the image grid.

Non-mazimum Suppression

Non-maximum suppression selects as edge candi-
dates those pixels for which the gradient magnitude is
maximal in the direction of the gradient. This involves
interpolating the gradient magnitude between each of
two pairs of adjacent pixels among the eight neighbors
of a pixel, one forward in the gradient direction, one
backward. However, it may not be critical to use in-
terpolation, in which case magnitudes of neighboring
values can be directly compared.

Thresholding with Hysteresis

Thresholding with hysteresis eliminates weak edges
due to noise, using the threshold, while connecting ex-
tended curves over small gaps using hysteresis. Two
thresholds are computed, low and high, based on an
estimate of the noise in the image brightness. The non-
maximum suppression step selects those pixels where
the gradient magnitude is maximal in the direction of
the gradient. In the thresholding step, all selected pixels
with gradient magnitude below low are eliminated. All
pixels with values above Aigh are considered as edges.
All pixels with values between low and high are edges if
they can be connected to a pixel above high through a
chain of pixels above low. All others are eliminated.

This is a spreading activation operation; it prope-
gates information along a set of connected edge pixels.
The algorithm iterates, in each step marking as edge
pixels any low pixels adjacent to edge pixels. When
o pixels change state, the iteration terminates, taking
O(m) steps, a number proportional to the length m of
the longest chain of low pixels which eventually become
edge pixels. The running time of this operation can be
reduced to O(logm), using distance doubling.

Noise Estimation

Estimating noise in the image can be performed by

analyzing a histogram of the gradient magnitudes. Most
computational implementations of this step perform a
global analysis of the gradient magnitude distribution,
which is essentially non-local; we have had success with
a Connection Machine impiementation using local his-
tograms. The thresholds used in Canny edge detection
depend on the final task for which the edges are used. A
conservative strategy can use an arbitrary low threshold
to eliminate the need for the costly processing required
to accumulate a histogram. Where a more precise es-
timate of noise is needed, it may be possible to find a
scheme that use a coarse estimate of the gradient magni-
tude distribution, with minimal global communijcation.

4.2. Stereo

The Drumbheller-Poggio parallel stereo algorithm
[Drumheller and Poggio, 1986] runs as part of the Vi-
sion Machine. Disparity data produced by the algo-
rithm comprise one of the inputs to the MRF-based
integration stage of the Vision Machine. We are ex-
ploring various extensions of the algorithm, as well as
the possible use of feedback from the integration stage.
In this section, we will review the algorithm briefly, then
proceed to a discussion of current research.

The stereo algorithm runs on the Connection Ma-
chine system with good results on natural scenes in
times that are typically on the order of one second. The
stereo algorithm is presently being extended in the con-
text of the Vision Machine project.

4.2.1. Drumbheller-Poggio Stereo Algorithm

Stereo matching is an ill-posed problem [see Bert-
ero et.al.,, 1987] that cannot be solved without taking
advantage of natural constraints. The continuity con-
straint [see, for instance, Marr and Poggio, 1976] asserts
that the world consists primarily of piecewise smooth
surfaces. If the scene contains no transparent objects,
then the unigqueness constraint applies: there can be
only one match along the left or right lines of sight. If
there are no narrow occluding objects, the ordering con-
straint [Poggio and Yuille, 1984| holds: any two points
must be imaged in the same relative order in the left
and right eyes.

The specific s priors assumption on which the algo-
rithm is based is that the disparity - that is, the depth
of the surface - is locally constant in a small region sur-
rounding a pixel. It is a restrictive assumption which,
however, may be a satisfactory local approximation in
many cases (it can be extended to more general surface
assumptions in a straightforward way but at high com-
putational cost). Let E.(z,y) and Er(z,y) represent

the left and the right image of a stereo pair or some
transformation of it, such as filtered images or a map
of the zero-crossings in the two images (more generally,
they can be maps containing a feature vector at each
location (z,y) in the image).

We look for a discrete disparity d(z,y) at each lo-
cation z,y in the image that minimizes

NEL(z.y) = Er(z + d(Z,¥), ¥ pach, (1)

where the norm is a summation over a local neighbor-
hood centered at each location (z,y); d(z) is assumed
constant in the neighborhood. Equation (1) implies that
we should look at each (z,y) for d(z,y) such that

/ (Er(z.v)Er(z + d(z.v),) dedy (2)
patchy

is maximized.

The algorithm that we have implemented on the
Connection Machine is actually somewhat more com-
plicated, since it involves geometric constraints that af-
fect the way the maximum operation is performed (see
Drumbheller and Poggio, 1986). The implementation
currently used in the Vision Machine at the AI Lab uses
the maps of Canny’s edges obtained from each image for
E, and Eg.

In more detail, the algorithm is composed of the
following steps:

1) Compute features for matching.
2) Compute potential matches between features.

3) Determine the degree of continuity around esch po-
tential match.

4) Choose correct matches based on the constraints of
continuity, uniqueness, and ordering.

Potential matches between features are computed
in the following way. Assuming that the images are
registered so that the epipolar lines are horizontal, the
stereo matching problem becomes one-dimensional: an
edge in the left image can match any of the edges in
the corresponding horizontal scan line in the right im-
age. Sliding the right image over the left image horizon-
tally, we compute a set of potential match planes, one
for each borizontal disparity. Let p(z,y,d) denote the
value of the (z,y) entry of the potential match plane at
disparity d. We set p(z,y,d) = 1 if there is an edge at
location (z,y) in the left image and a compatible edge
at location (z — d,y) in the right image; otherwise, set
p(z.y,d) = 0. In the case of the DOG edge detector,

two edges are compatible if the sign of the convolution
for each edge is the same.

To determine the degree of continuity around each
potential match (z,y,d), we compute a local support
score s(z,y,d) =pater P(Z,y,d), where patch is a small
neighborhood of (z, y, d) within the dth potential match
plane. In effect, nearby points in patch can “vote” for
the disparity d. The score s(z,y,d) will be high if the
continuity constraint is satisfied near (z,y.d), i.e., if
patch contains many votes. This step corresponds to
the integral over the patch in Equation (2).

Finally, we attempt to select the correct matches
by applying the uniqueness and ordering constraints
(see above). To apply the uniqueness constraint, each
match suppresses all other matches along the left and
right lines of sight with weaker scores. To enforce the
ordering constraint, if two matches are not imaged in
the same relative order in left and right views, we dis-
card the match with the smaller support score. In effect,
each match suppresses matches with lower scores in its
forbidden zone [Poggio and Yuille, 1984]. This step cor-
responds to choosing the disparity value that maximizes
the integral of Equation (2).

4.2.2. Improvements

Using this algorithm as a base, we are exploring the
following topics:
Detection of Depth Discontinuities

The Marr-Poggio continuity constraint is both a
strength and a weakness of the stereo algorithm. Fa-
voring comtinuous disparity surfaces reduces the solu-
tion space tremendously, but also tends to smooth over
depth discontinuities present in the scene. Consider
what happens near a linear depth discontinuity, say a
point near the edge of a table viewed from above. The
square local support neighborhood for the point will be
divided between points on the table and points on the
floor; thus, almost half of the votes wiil be for the wrong
disparity.

One solution to this problem is feedback from the
MRF integration stage. We can take the depth dis-
continuities located by the integration stage (using the
results from a first pass of the stereo algorithm, among
other inputs) and use them to restrict the local support
neighborhoods so that they do not span discontinuities.
In the example mentioned above, the support neighbor-
hood would be trimmed to avoid crossing the disconti-
nuity between the table and the floor, and thus would
not pick up spurious votes from the floor.

We can also try to locate discontinuities by ex-
amining intermediate results of the stereo algorithm.

H EE EE EEE M EEEEEEEBREEN

Consider a histogram of votes vs. disparity for the ta-
ble/floor example. For a support region centered near
the edge of the table, we expect to see two strong peaks:
one at the disparity of the floor, and the other at the
disparity of the table. Therefore a bimodal histogram
is strong evidence for the presence of a discontinuity.

These two ideas can be used in conjunction. Dis-
continuity detection within stereo can take advantage of
the extra information provided by the vote histograms.
By passing better depth data (and perhaps candidate
discontinuity locations) to the integration stage, we im-
prove the detection of discontinuities at the higher level.

Improving the Stereo Matcher

The original Drumheller-Poggio algorithm matched
DOG zero-crossings, where the local support score
counted the number of zero-crossings in the left image
patch matching edges in the right image patch, at a
given disparity. We have modified the matcher in a va-
riety of ways.

1) Canny edges. The matcher now uses edges derived
by a parallel implementation of the Canny edge de-
tector {Canny, 1983; Little et al., 1987] rather than
DOG zero-crossings, for better localization.

2) Gradient direction constraint. We allow two Canny
edges to match only if the associated brightness
gradient directions are aligned within a parame-
terized tolerance. This is analogous to the re-
striction in the Marr-Poggio-Grimson stereo algo-
rithm (Grimson,1981), where two zero-crossings can
match only if the directions of the DOG gradients
are approximately equal. Matching gradient orien-
tations is a tighter constraint than matching the
sign of the DOG convolution. Furthermore, the
DOG sign is numerically unstable for horizontally
oriented edges.

3) The scores are now normalized to take into account
the number of edges in the left and right image
patches eligible to match, so that patches with
high edge densities do not generate artificially high
scores. We plan to change the matcher so that
edges that fail to match would count as negative
evidence by reducing the support score, but this
has not yet been implemented.

In the near future, we will explore matching bright-
ness values as well as edges, wsing a crose-correlation
approach similar to that of Little, Bilthoff and Poggio
[1987] for motion estimation [Gillett, in preparation).

SN

Identifying Areas that are Outside of the Matcher’s Dis-
parity Renge

The stereo algorithm searches a limited disparity
range, selected manually. Every potential match in the
scene (an edge with a matching edge at some dispar-
ity) is assigned the in-range disparity with the highest
score, even though the correct disparity may be out of
range. How can we tell when an area of the scene is out
of range?

The most effective approach that we have at-
tempted to date is to look for regions with low matching
scores. Two patches that are incorrectly matched will,
in general, produce a low matching score.

4.2.3. Memory-Based Registration and Calibra-
tion

Registration of the image pair for the stereo algo-
rithm is done by presenting to the system a pattern of
dots, roughly on a sparse grid, at the distance around
which stereo has to operate. The registration is accom-
plished using a warping computed by matching the dots
from the left and right images. The dots are sparse
enough that matching is unambiguous. The matching
defines a warping vector for ~ach dot; at other points
the warping is computed by b...aear interpolation of the
two components of warping vectors. The warping nec-
essary for mapping the right image onto the left image
is then stored. Prior to stereo-matching, the right im-
age is warped according to the pre-stored addresses by
sending each pixel in the right image to the processor
specified in the table.

The warping table corrects for deformations, in-
cluding those due to vertical disparities and rotations,
those due to the image geometry (errors in the align-
ment of the cameras, perspective projection, errors in-
troduced by the optics, etc.) We plan to store sev-
eral warping tables for each of a few convergence angles
of the two cameras (assuming symmetric convergence).
We conjecture that simple interpolation can yield suf-
ficiently accurate warping tables for fixation angles in-
termediate to the ones stored. Notice that these tables
are independent of the position of the head. Absolute
depth is not the concern here (we are not using it in our
present Vision Machine), but it could easily be recov-
ered from knowledge of the convergence angle. Notice
also that the whole registration scheme has the flavor
of a learning process. Convergence angles are inputs
and warping tables are the outputs of the modules; the
set of angles, together with the associated warping ta-
bles, represent the set of input-output examples. The
system can “generalize” by interpolating between warp-

ing tables and providing the warping corresponding to a
vergence angle that does not appear in the set of “exam-
ples”. Calibration of disparity to depth could be done
in a similar way.

4.3 Motion

The motion algorithm computes the optical flow
field, a vector field which approximates the projected
motion field. The procedure produces sparse or dense
output, depending on whether it uses edge features or
intensities. The algorithm assumes that image displace-
ments are small, within a range (+4,+6). It is also
assumed that the optical flow is locally constant in a
small region surrounding a point. This assumption is
strictly only true for translational motion of 3-D pla-
nar surface patches parallel to the image plane. It is a
restrictive assumption which, however, may be a satis-
factory local approximation in many cases. Let Ey(z,y)
and Ei4ae(z,y) represent transformations of two dis-
crete images separated by time interval At¢, such as fil-
tered images or a map of the brightness changes in the
two images (more generally, they can be maps contain-
ing a feature vector at each location (z,y) in the image)
{Kass, 1986; Nishihara, 1984].

We look for a discrete motion displacement v =
(ve,vy) at each location z,y in the image that mini-
mizes

|Ee(2,y) = Ecs ae(z +v2 Aty +vyAt)|| pares, = min (3)

where the norm is a summation over a local neighbor-
hood centered at each location (z,y); v(z,y) is assumed
constant in the neighborhood. Equation (3) implies that
we should look at each (z,y) for v = (vg,vy) such that

/ (Edz.y)~ Ecrar(z +vsdt,y +v,08)) dzdy (4)
patehy

is minimized. Alternatively, one can maximize the neg-
ative of the integrated result. Equation (4) represents
the sum of the pointwise squared differences between a
patch in the first image centered around the location
(z.y) and a patch in the second image centered around
the location (z + v At, y + vy At).

This algorithm can be transiated easily into the
following description. Consider a network of proces-
sors representing the result of the integrand in Equa-
tion (4). Assume for simplicity that this result is ei-
ther 0 or 1 (this is the case if E; and E4 4, are binary
feature mape). The processors hold the result of dif-

10

ferencing (taking the logical “exclusive or”) the right
and left image map for different values of (z,y) and
vg, vy. The next stage, corresponding exactly to the in-
tegral operation over the patch, is for each processor to
summate the total (2) in an (z,y) neighborhood at the
same disparity. Note that this summation operation is
efficiently implemented on the Connection Machine us-
ing scan computations. Each processor thus collects a
vote indicating support that a patch of surface exists
at that displacement. The algorithm iterates over all
displacements in the range (£6, +6), recording the val-
ues of the integral (2) for each displacement. The last
stage is to choose y(z,y) among the displacements in
the allowed range that maximizes the integral. This is
done by an operation of “non-maximum suppression”
across velocities out of the finite allowed set: at the
given (z,y), the processor is found that has the max-
imum vote. The corresponding y(z,y) is the velocity
of the surface patch found by the algorithm. The ac-
tual implementation of this scheme can be simplified
so that the “non~maximum suppression” occurs dur-
ing iteration over displacements, so that no actual table
of summed differences over displacements need be con-
structed. In practice, the algorithm has been shown to
be effective both for synthetic and natural images us-
ing different types of features or measurements on the
brightness data, including edges (both zero-crossings of
the Laplacian of Gaussian and Canny's method), which
generate sparse results along brightness edges, or bright-
ness data directly, or the Laplacian of Gaussian or its
sign, which generate dense results. Because the opti-
cal flow is computed from quantities integrated over the
individual patches, the results are robust against the
effects of uncorrelated noise.

The comparison stage employs patchwise cross-
correlation, which exploits local constancy of the opti-
cal flow (the velocity field is guaranteed to be constant
for translations parallel to the image plane of a planar
surface patch; it is a cubic polynomial for arbitrary mo-
tion of a planar surface [see Waxman, 1986; Little et.al.,
1987). Experimentally, we have used zero-crossings, the
Laplacian of Gaussian filtered image, its sign, and the
smoothed brightness values, with similar results. It is
interesting that methods superficislly so different (edge-
based and intensity-based) give such similar results. As
we mentioned earlier, this is not surprising. There are
theoretical arguments that support, for instance, the
equivalence of cross-correlating the sign bit of the Lapla-
cian flltered image and the Laplacian filtered image it-
self. The argument is based on the following theorem
[see Little, Bilthoff and Poggio, in preparation), which
is a slight reformulation of a well-known theorem.

- - ’ -

= Il I IE Il = .

Theorem

If f(z.y) and g(z,y) are zero mean jointly normal
processes, their cross-correlation is determined fully by
the correlation of the sign of f and of the sign of ¢ (and
determines it). In particular

2 .
Rf.i = ;arc.sm(Rf.,)

where f = sign f and =9ign g

Thus, cross-correlation of the sign bit is exactly
equivalent to cross-correlation of the signal itself (for
Gaussian processes). Notice that from the point of view
of information, the sign bit of the signal is completely
equivalent to the zero-crossing of the signal. Nishibara
first used patchwise cross—correlation of the sign bit of
DOG filtered images [Nishihara, 1984}, and has imple-
mented it more recently on real-time hardware [Nishi-
hara et.al., 1988].

The existence of discontinuities can be detected in
optical flow, as in stereo, both during computation and
by processing the resulting flow field. The latter field
is input to the MRF integration stage. During compu-
tation, discontinuities in optical flow arising from oc-
clusions are indicated by low normalized scores for the
chosen displacement.

4.4. Color

The color algorithm that we have implemented ia
a very preliminary version of a module that should find
the boundaries in the surface spectral reflectance func-
tion, that is, discontinuities in the surface color. The al-
gorithm relies on the idea of effective illumination and
on the single source assumption, both introduced by
Hurlbert and Poggio [see Poggio et.al., 1985].

The single source assumption states that the illu-
mination may be separated into two components, one
dependent only on wavelength and one dependent only
on spatial coordinates, end generally holds for illumina-
tion from a single light source. [t allows us to write the
image irradiance equation for a Lambertian world as

I = k" E(z,y)p"(z,y) (5)

where [” is the image irradiance in the vthA spectral
channel (v = red, green, blue), p”(z,y) is the surface
spectral reflectance (or albedo) and the effective illu-
mination E(z,y) absorbs the spatial variations of the
illumination and the shading due to the 3D shape of
surfaces (k” is a constant for each channel and depends
only on the luminant). A simple segmentation algo-
rithm is then obtained by considering the equation

L

A

I' k" pr
Ir+19 krpr + kips
which changes only when p" or p? or both change. Thus
H, which is piecewise constant, has discontinuities that
mark changes in the surface albedo, independently of
changes in the effective illumination.

The quantity H(z,y) is defined almost everywhere.
but is typically noisy. To counter the effect of noise, we
exploit the prior information that & should be piece-
wise constant with discontinuities that are themseives
continuous, non-intersecting lines. As we will discuss
later, this restoration step is achieved by using a MRF
model. This algorithm works only under the restrictive
assumption that specular reflections can be neglected.
Hurlbert [1988) discusses in more detail the scheme out-
lined here and how it can be extended to more general
conditions.

H(z,y) = (6)

4.5, Texture

The texture algorithm is a greatly simplified par-
allel version of the texture algorithm developed by
Voorhees and Poggio (1987]. Texture is a scalar mea-
sure computed by summation of texton densities over
small regions surrounding every point. Discontinuities
in this messure can correspond to occlusion boundaries,
or orientation discontinuities, which cause foreshorten-
ing. Textons are computed in the image by simple ap-
proximation to the methods presented in Voorhees and
Poggio [1987]. For this example, the textons are re-
stricted to blob-like regions, without regard to orienta-
tion selection.

To compute textons, the image is first filtered by a.

- Laplacian of Gaussian filter at several different scales.
" The smallest scale selects the textural elements. The

Laplacian of Gaussian image is then thresholded at a
non-zero value to find the regions which comprise the
blobe identified by the textons. The result is a binary
image with non-zero values only in the areas of the
blobs. A simple summation counts the density of biobs,
the portion of the summation region covered by blobs,
in a small area surrounding each point. This operation
effectively measures the density of blobs at the small
scale, while also counting the presence of blobs caused
by large occlusion edges at the boundaries of textured
regioes. Contrast boundaries appear as blobs in the
Laplacian of Gaussian image. To remove their effect,
we use the Laplacian of Gaussian image at a slightly
coarser scale. Blobs caused by the texture at the fine
scale do not appear at this coarser-scale, while the con-
trast boundaries, as well as all other blobs at coarser
scales, remain. This coarse blob image filters the fine

=

blobs - blobs at the coarser scale are removed from the
fine scale image. Then, summation, whether with a sim-
ple scan operation, or Gaussian filtering, can determine
the blob density at the fine scale only. This is one exam-
ple where multiple spatial scales are used in the present
implementation of the Vision Machine.

5. The Integration Stage and MRF

Whereas it is reasonable that combining the evi-
dence provided by multiple cues - for example, »dge
detection, stereo and color - should provide a more re-
liable map of the surfaces than any single cue alone,
it is not obvious how this integration can be accom-
plished. The various physical processes that contribute
to image formation - surface depth, surface orientation,
albedo (Lambertian and specular component), illumina-
tion - are coupled to the image data, and therefore to
each other, through the imaging equation. The cou-
pling is, however, difficult to exploit in a robust way,
since it depends critically on the reflectance and imag-
ing models. We argue that the coupling of the image
data to the surface and illumination properties is of a
more qualitative and robust sort at locations in which
image brightness changes sharply and surface proper-
ties are discontinuous, in short, at edges. The intuitive
reason for this is that at discontinuities, the coupling
between different physical processes and the image data
is robust and qualitative. For instance, a depth dis-
continuity usually originates a brightness edge in the
image, and a motion boundary often corresponds to a
depth discontinuity (and an brightness edge) in the im-
age. This view suggests the following integration scheme
for restoring the data provided by early modules. The
results provided by stereo, motion and other visual cues
are typically noisy and sparse. We can improve them
by exploiting the fact that they should be smooth, or
even piecewise constant (as in the case of the albedo),
between discontinuities. We can exploit ¢ priori infor-
mation about generic properties of the discontinuities
themselves: for instance, that they usually are continu-
ous and non intersecting.

The idea is then to detect discontinuities in each
cue, say depth, simultanecusly with the approximation
of the depth data. The detection of discontinuities is
helped by information on the presence and type of dis-
continuities in the surfaces and surface properties (see
Figure 1), which are coupled to the brightness edges in
the image.

Notice that reliable detection of discontinuities is
critical for a vision system, since discontinuities are of-
ten the most important locations in a scene: depth dis-
continuities, for example, normally correspond to the

boundaries of an object or an object part. The idea is
thus to couple different cues through their discontinu-
ities and to use information from several cues simulta-
neously to help refine the initial estimation of disconti-
nuities, which are typically noisy and sparse.

How can this be done? We have chosen to use the
machinery of Markov Random Fields (MRF's), initially
suggested for image processing by Geman and Geman
(1984). In tae following we will give a brief, informal
outline of the technique and of our integration scheme.
More detailed information about MRFs can be found in
Geman and Geman (1984] and Marroquin et.al. (1987].
Gamble and Poggio [1987] describe an earlier version of
our integration scheme and its implementation, outlined
in the next section.

5.1. MRF Models

Consider the prototypical problem of approximat-
ing a surface given sparse and noisy data (dey.ch data),
on a regular 2D lattice of sites. We first define the
prior probability of the class of surfaces we are interested
in. The probability of a certain depth at any given site
in the lattice depends only upon neighboring sites (the
Markov property). Because of the Clifford-Hammersley
theorem, the prior probability is gtn.;a.;teed to have the
Gibbs form

P(f) = e~ (M)

- where Z is a normalization constant, T is called temper-
~ ature,and U(f) = 3o Uc(f) is an energy function that

can be computed as the sum of local contributions from
each neighborhood. The sum of the potentials, Uc(X),
is over the neighborhood’s cliques. A clique is either a
single lattice site or a set of lattice sites such that any
two sites belonging to it are neighbors of one another.
Thus U(f) can be considered as the sum over the poesi-
ble configurations of each neighborhood [see Marroquin
et.al., 1987]. As a simple example, when the surfaces
are expected to be smooth, the prior probability can be
given in terms of

U(f) = (fi = £i)? (8)

where i and j are neighboring sites (belonging to the
same clique).

If a model of the observation process is available
(i.e., a model of the noise), then one can write the con-
ditional probability P(g/f) of the sparse observation ¢
for any given surface f. Bayes Theorem then allows one
to write the posterior distribution

“ -’-

(a)

» 2lololelol
o|lojo|o]|o]
S e SN ey G
ololojo]o]
ololololo|
ololofojol
MRP Lattiee
_I—
0 o0oo —'—'——
° R a—
Depth Process '
Neighborhood Line Precess

Figure 5: The MRF lattice

P(f]g) = e =2#4 ©)

In the simple earlier example, we have (for Gaus-
sian noise)

U(f/9) =Y aw(fi~a) +(fi- £ (10)
C

where v; = 1 only where data are available. More com-
plicated cases can be handled in a similar manner.

The posterior distribution cannot be solved ana-
lytically, but sample distributions with the probabil-
ity distribution of Equation (3) can be obtained using
Monte Carlo techniques such as the Metropolis algo-
rithm. These algorithms sample the space of possi-
ble surfaces according to the probability distribution
P(f/g) that is determined by the prior knowledge of
the allowed class of surfaces, the model of noise, and the
obeerved data. In our implementation, a highly parallel
computer generates a sequence of surfaces from which,

§2

for instance, the surface corresponding to the maximum
of P(f/g) can be found. This corresponds to finding the
global minimum of U(f/g) (simulated annealing is one
of the possible techniques). Other criteria can be used:
Marroquin [1985] has shown that the average surface f
under the posterior distribution is often a better esti-
mate which can be obtained more efficiently sumpiy by
finding the average value of f at each lattice site.

One of the main attractions of MRF's is that the
prior probability distribution can be made to embed
more sophisticated assumptions about the world. Ge-
man and Geman [1984] introduced the idea of another
process, the line process, located on the dual lattice (see
Figure 5), and representing explicitly the presence or ab-
sence of discontinuities that break the smoothness as-
sumption (Equation (2)). The associated prior energy
then becomes

Uc(f) = (fi = £’ =D +8Ve() (1)
where [is a binary line element between site i,;. V¢
is a term that reflects the fact that certain configura-
tions of the line process are more likely than others to
occur. In our world, depth discontinuities are usually
themselves continuous, non-intersecting, and rarely iso-
lated joints. These properties of physical discontinu-
ities can be enforced locally by defining an appropriate
set of energy values V(1) for different configurations of
the line process in the neighborhood of the site (notice
that the assignment of zero energy values to the non-
central cliques mentioned in Gamble and Poggio [1987]
is wrong, as pointed out to us by Tail Symchony).

5.23. Organization of Integration

It is possible to extend the energy function of Equa-
tion (5) to accommodate the interaction of more pro-
cesses and of their discontinuities. In particular, we
have extended the energy function to couple several of
the early vision modules (depth, motion, texture and
color) to brightness edges in the image. This is a central
point in our integration scheme: brightness edges guide
the computation of discontinuities in the physical prop-
erties of the surface, thereby coupling surface depth,
surface orientation, motion, texture and color, each to
the image brightness data and to each other. The reason
for the role of brightness edges is that changes in surface
properties usually produce large brightness gradients in
the image. It is exactly for this reason that edge de-
tection is so important in both artificial and biological
vision.

The coupling to brightness edges may be done by
replacing the term Vo({!) in the last equation with the
term

V(l.e) = g(e], V(i) (12)

with ¢ representing a measure of the presence of an
brightness edge between site i,;. The term ¢ has the
effect of modifying the probability of the line process
configuration depending on the brightness edge data
{(V(l,e) = —log p(l/e)). This term facilitates forma-
tion of discontinuities (that is, I]) at the locations of
brightness edges. Ideally, the brightness edges (and the
neighboring image properties) activate, with different
probabilities, the different surface discontinuities (see
Figure 1) which in turn are coupled to the output of
stereo, motion, color, texture, and possibly other early
algorithms.

We have been using the MRF machinery with prior
energies like that given in Equations (11) and (12) (see
also Figure 1) to integrate edge brightness data with
steceo, motion and texture information on the MIT Vi-
sion Machine System.

We should emphasize that our present implemen-
tation represents a subset of the possible interactions
shown in Figure 1, itself only a simplified version of the
orgazization of the likely integration process. The sys-
tem will be improved in an incremental fashion, includ-
ing pathways not shown in Figure 1, such as feed-backs
from the results of integration into the matching stage
of the stereo and motion algorithms.

5.3. Algorithms: Deterministic and Stochastic

A few disclaimers are in order here. We have cho-
sen to use MRF models because of their generality and
theoretical attractiveness. This does not imply that
stochastic algorithms must be used. For instance, in
the cases in which the MRF model reduces ¢o standard
regularization [Marroquin et.al., 1987] and the data are
given on a regular grid, the MRF formulation leads not
only to a purely deterministic algorithm, but also to a
convolution filter.

We expect that during our research we will define
deterministic algorithms that are either equivalent to a
MRF formulation, or are a good approximation to the
stochastic Monte Carlo algorithms. More specifically,
we expect that the probebilistic formulation of MRF
is in a sense too general, and therefore too inefficient.
Remember that MRF models are quite general (for in-
stance, regularization can be regarded from a proba-
bilistic point of view as an instance of MRF).

-

6. Ilustrative Results

Figures 7 and 8 show the results of the Vision Ma-
chine applied to the scene in Figure § and some of the
intermediate steps. Figure 7 show the brightness edges
somputed by the Canny aigorithm at two different spa-
tial scales (¢ = 2.5 and o = 4). We show neither the
stereo pair nor the motion sequence in which the teddy
bear was rolling slightly on his back from one frame
to the next. The results given by the stereo, motion,
texture and color algorithms, after an initial smooth-
ing to make them dense {see Gamble and Poggio, 1987],
are shown in the first column on the left of Figure 8
(from top to bottom). They represent the input to the
MRF machinery that integrates each of those data sets
with the brightness edges. The color algorithm uses the
edges at the coarser resolution, since we want to avoid
detecting texture marks on the surface; the other cues
are integrated with the Canny edges at a smaller scale
(0 = 2.5). The central column of Figure § shows the
reconstructed depth, color (the quantity H defined ear-
lier), texture and motion flow; the left column show the
discontinuities found by the MRF machinery in each of
the cues. Processing of the stereo output finds depth
discontinuities in the scene (mainly the outlines of the
teddy, plus a fold of a wet suit protruding outward).
Motion discontinuities are found by the MRF machinery
with help from brightness edges. The color boundaries
show regions of constant surface color, independently of
its shading: notice, for instance, that brightness edges
inside the teddy bear, due to shading, do not appear as
color edges (the color images were taken from a different
camera). The texture boundaries correapond quite well
to different textured surfaces.

Figure 9 shows that the union of the discontinu-
ities in depth and motion for the scene of Figure 6 gives
a rather good “cartoon” of the original scene. At the
same time, our integration algorithm achieves a prelim-
inary classification of the brightness edges in the image,
in terms of their physical origin. A more complete clas-
sification will be achieved by the full scheme of Figure
1: the Iattices at the top classify the different types of
discontinuities in the scene. The set of such discontinu-
ities in the various physical processes should represent
a good set of data for later recognition stages.

7. The Future

The Vision Machine is evolving rapidly. We plan
to add other early vision algorithms (such as shape-
from-shading) and to develop further the ones already

“

-
(WY

Figure 6: Grey-level image of a natural scene processed by
the Vision Machine

Figure 7: Canny edges of the image in Figure 6

implemented (especially color and texture). Most of
the future effort will be directed towards a more sat-
isfactory integration: we will define and implement a
scheme of the type shown in Figure 1. Finding the cor-
rect values of the parameter is critical for the practical
success of the MRF technique; thus we will attempt to
find useful solutions to the parameter estimation prob-
lem, an issue strictly related to learning from examples.
An important step in the very near future will be the
implementation of recognition algorithms operating on
the output of the integration stage.

7T.1. Towards Recognition

The output of the integration stage provides a set of
edges labeled in terms of physical discontinuities of the
surface properties. They should represent a good input
to a model-based recognition algorithm like the ones de-
scribed by Dan Huttenlocher and by Todd Cass in these
Proceedings. In particular, we are interfacing the Vision
Machine as implemented so far with the Cass algorithm.
Initially, we will use only discontinuities for recognition;
later we will use also the information provided by the
MRF's on the surface properties between discontinuities.

’

Notice that in the full system we may have several vi-
sual routines [see Poggio et.al., these Proceedings) op-
erating also on the maps of physical discontinuities and
performing task-dependent grouping operations before
recognition.

7.2. Learning and Parameter Estimation

Using the MRF model involves an energy func-
tion which has several free parameters, in addition to
the many possible neighborhood systems. The values
of these parameters determine a distribution over the

configuration-space to which the system converges, and
the speed of convergence. Thus rigorous methods for
estimating these parameters are essential for the practi-
cal success of the method and for meaningful results. In
some cases, parameters can be learned from the data:
e.g., texture parameters (Geman and Graffigne, 1987],
or neighborhood parameters (for which a cellular au-
tomaton model may be the most convenient for the pur-
pose of learning). There are general statistical methods
which can be used for parameter estimation:

Figure 8: MRF results for stereo, motion, texture and color

Figure 9: Union of depth and motion discontinuities

e A maximum likelihood estimate - one can use the
indirect iterative EM algorithm [Dempster et.al,
1977}, which is most useful for maximum likeli-
hood estimation from incomplete data [see Mar-
roquin, 1987 for a special case]. This algorithm in-
volves the iterative maximization (over the param-
eter space) of the expected value of the likelihood
function given that the parameters take the values
of their estimation in the previous iteration. Alter-
natively, a search constrained by some statistics for
a minimum of an appropriate merit function may
be employed [see Marroquin, 1987).

e A smoothing (regularization) parameter can be es-
timated using the methods of cross-validation or
unbiased risk, to minimize the mean square error.
In cross-validation, an estimate is obtained omit-
ting one data point. The goal is to minimizse the
distance between the predicted data point (from
the estimate above with the point omitted) and the
actual value, for all points.

In the case of Markov Random Fields, some more
specific approaches are appropriate for parameter esti-
mation:

1) Besag [1974] suggested conditional maximum like-
lihood estimation using coding methods, maxi-
mum likelihood estimation with unilateral approx-
imations on the rectangular lattice, or “maximum
pseudolikelihood” - a method to estimate param-
eters for homogeneous random fields {see Geman
and Graffigne, 1987].

2) For the MPM estimator, where a fixed temperature
is yet another parameter to be estimated, one can
try to use the physics behind the model to find a
temperature with as little disorder as possible and

still reasonable time of convergence to equilibrium
(e.g., away from “phase-transition”).

An alternative asymptotic approach can be used
with smoothing (regularization) terms: instead of esti-
mating the smoothing parameter, let it tend to 0 as the
temperature tends to 0, to reduce the smoothing close
to the final configuration [see Geman and Geman, 1987].

In summary, we plan to explore three distinct
stages for parameter estimation in the integration stage
of the Vision Machine:

e Modeling (from the physics of surfaces, of the imag-
ing process and of the class of scenes to be analyzed
and the tasks to be performed) and the form of
the prior and of some conditional probabilities in-
volved (e.g., the type of physical edges from prop-
erties of the measurements, such as characteristics
of the brightness data). Range of allowed param-
eter values may also be established at this stage
(e.g., minimum and maximum brightness value in a
scene, depth differences, positivity of certain mea-
surements, distribution of expected velocities, re-
flectance properties, characteristics of the illumi-
nant, etc.).

e Estimating of parameter values from set of exam-
ples in which data and desired solution are given.
This is a learning stage. We may have to use days
of CM time and, at least initially, synthetic images
to do this.

o Tuning of some of the parameters directly from the
data (by using EM algorithm, cross-validation, Be-
sag’s work, or various types of heuristics).

The dream is that at some point in the future the
Vision Machine will run all the time, day and night,
looking about and learning on its own to see better and
better.

7.3. Fast Vision: The Role of Time Smoothness

The present version of the Vision Machine pro-
cesses only isolated frames. Even our motion algorithm
takes as input simply a sequence of two images. The
reason for this is, of course, limitations in raw speed.
We cannot perform all of the processing we do at video
rate (say, 30 frames per second), though this goal is cer-
tainly within present technological capabilities. If we
could process frames at video rate, we could exploit con-
straints in the time dimension similar to the ones we are
already exploiting in the space domain. Surfaces - and
even the brightness array itself - do not usually change
too much from frame to frame. This is a constraint of

4—_

smoothness in time, which is valid almost everywhere,
but not across discontinuities in time. Thus one may
use the same MRF technique, applied to the output of
stereo, motion, color, and texture, and enforcing conti-
nuity in time (if there are no discontimiities), that is,
exploiting the redundancy in the sequence of frames.

We believe that the surface reconstructed from a
stereo pair usually does not need to be recomputed com-
pletely when the next stereo pair is taken a fraction of a
second later. Of course, the role of the MRFs may be ac-
complished in this case by some more specific and more
efficient deterministic method such as, for instance, a
form of Kalman filtering. Notice that space-time MRF's
applied to the brightness arrays would yield spatiotem-
poral interpolation and approximation of a kind already
considered [Fahle and Poggio, 1980; Poggio, Nielsen and
Nishihara, 1982; Bliss, 1985].

7.4. A VLSI Vision Machine?

Qur Vision Machine is mostly specialized software
running on a general purpose computer, tl?e Connection
Machine. This is a good system for the present stage of

" experimentation and development. Later, once we have

perfected and tested the algorithms and the overall sys-
tem, it will make sense to compile the software in silicon
in order to produce a faster, cheaper, and smaller Vi-
sion Machine. We are presently planning to use VLSI
technologies to develop some initial chips as a first step
toward this goal. In this section, we will outline some
thoughts about VLSI implementation of the Vision Ma-
chine.

Algorithms and Hardware

We realize that our specialized software vision algo-
rithms are not, in general, optimized for hardware im-
plementation. So, rather than directly “hardwiring al-
gorithms” into standard computing circuitry, we will be
investigating “algorithmic hardware” designs that uti-
lize the local, symmetric nature of early vision problems.
This will be an iterative process, as the algorithm influ-
ences the hardware design and as hardware constraints
modify the algorithm.

Degree of Paralleliam

Typical vision tasks require tremendous amounts
of computing power and are usually parallel in nature.
As an example, biology uses highly parallel networks
of relatively slow components to achieve sophisticated
vision systems. However, when implementing our al-
gorithms into silicon integrated circuits, it is not clear
what level of parallelism is necessary. While biology is
able to use three dimensions to construct highly inter-

connected parallel networks, VLSI is limited to 2 § di-
mensions, making highly parallel networks much more
difficult and costly to implement. However, the electri-
cal components of silicon integrated circuits are approx-
imately four orders of magnitude faster than the elec-
trochemical components of biology. This suggests that
pipelined processing or other methods of time-sharing
computing power may be able to compensate for the
lower degree of connectivity of silicon VLSI. Clearly, the
architecture of a VLSI vision system may not resemble
any biological vision systems.

Signal Representiation

Within the integrated circuit, the image data may
be represented as a digital word or an analog value.
While the advantages of digital computation are its ac-
curacy and speed, digital circuits do not have as high
functionality per device as analog circuits. Therefore,
analog circuits should allow much denser computing
networks. This is particularly important for the integra-
tion of computational circuitry and photosensors, which
will help to alleviate the I/O bottleneck typically ex-
perienced whenever image data are serially transferred
between Vision Machine components. However, analog
circuits are limited in accuracy and are difficult to char-
acterize and design.

The primary motivation for a VLSI implementation
of our Vision Machine is to increase the computational
speed and reduce the physical size of the components
with the eventual goal of real-time, mobile vision sys-
tems. While the main computational engine of our Vi-
sion Machine is the Connection Machine, which is a very
powerful and flexible SIMD computer, specific VLSI im-
plementations will attempt to tradeoff computational
flexibility for faster performance and higher degree of
integration. A VLSI implementation of our Vision Ma-
chine can offer significant improvements in performance
that would be difficult or impossible to attain by other
methods. Presently, we are specifically investigating the
integration of charge coupled devices for photosensing
and simple parallel computations, such as binomial con-
volution and patchwise correlation.

Legends

Figure 1: A diagram of the overall organization of the
integration stage (see Gamble and Poggio, 1987 for
a complementary diagram]. The output of each of
the early visual cues (or algorithms) - stereo, mo-
tion, texture and color - are coupled to their own
line process (the crosses), i.e., their discontinuities.
They are also coupled to the discontinuities in the
surface properties - occluding edges (both extremal

here, 1s that changes in surface properties
usuallv produce large brnghtness gradients in
the image.

The coupling to high brightness gradients
may be done bv replacing the term VoK) in
the last equanion with the term:

Lilgr = a0y 6)

with » represenung 4 measure of the
strength of the brightness gradient (that 15,
of a brightness edge) between site ¢ and .
The term ¢ has the etfect of modifiing the
probability of the line process configuration
depending on the brightness edge data [for
nstance, ¢tb/.[/y = b/(1 ~17)]. This term
tacilitates tormation of disconunuities (that
15, .- = 11 at the locanions ot sharp bright-
ness changes, without restricting them only
to brightness cdges. High values of the
brightness gradient :together wich mage
dara in the neighborhood) acuivate with
ditferent probabulities the different ovpes of
surtace disconunuities (see Fig. 1) which, in
turn, are coupled to the output of stereo,
moution. color, texture, and possibly other
early vision algorithms.

We have been using the MRF machinery
with prior energies like that given in Egs. 5
and 6 isee also Fig. 1) to integrate edge
brnighmess data with stereo. motion, color,
and texture informaton on the MIT Vision
Machine Svstem. The svstem consists of a
two-camera eve-head input device and a
16K Connection Machine. All the carlv
vision algonthms—edge detecnon, stereo,
motion, color, and texture—as well as the
MREF algonthm. now run on the Connec-
non Machine several hundred umes faster
than on a convenuonal machine. The resuits
of integraung brightness edges with a paral-
lel stereo algorithm (20) are shown in Fig. 3.
In a similar way, the optical flow and its
boundary from the same scene are compured
from motion data (21) and brightness edges
i5. 6. 22. 23 Simple cxamples of a similar
integration performed with texture and col-
or data are shown in Fig. 3, d and ¢. The
texture algorithm is a gready simplified par-
allel version of the texture algorithm devel-
oped bv Voorhees and Poggio (24). It mea-
sures the level density of “blobs™ extracted
trom the image through a filtering process
nvolving center-surround filters with ap-
propnate size and threshold. The color algo-
nthm provides a local measure of hue,
H = RI(R + G), where R and G are the
measurements in the red and green channels,
respectively, of a digical color camera. Under
certain conditions [A. C. Hurlbert, sce
{251}, this ratio is independent of illumina-
tion and three-dimensional (3-D) shape. An
MRF model thar enforces local constancy of
che hue H uses these dense but noisy data to

21 OCTOBER 1988

segment the 1mage 1nto regions of different
constant reflectance (26). The coupling wich
brightness cdges facilitates finding the
boundaries: usually sharp changes n the
rauo H correspond to a subset of the bright-
ness edges.

The union of the disconunuities in depth,
motion, and texrure tor the scene of Fig. 3
gives a “cartoon” of the ongmal scene.
Notice that this “cartoon” represents discon-
unuities 1n the phvsical properties of 3-D
surfaces rhat are well defined, whereas
brighmess “discontinuinies” are not well de-
fined 1n terms of surface properties. Our
wntegranion algorithm achieves a preliminary
classification of the edges in the image, in
terms of their phvsical ongin. A more com-
plete classification may be achieved bv im-
plemenung the full scheme of Fig. 1; the
lartices at the top classifv the different cvpes
of discontinuities in the scene: depth discon-
tinuities, onentation discontinuities, albedo
edges, specular edges. and shadow edges.
The set of such discontinuities in the vanous
physical processes seems to represent a good
set ot data for later recogmition. In some
preliminarv experiments we have successful-
lv used a parallel, model-based recognition
svstem (27) on the disconnnuities (stereo
and motion) provided by our MRF scheme
(28).

Our present implementation represents a
subset of the possible interactions shown in
Fig. 1, itself onlv a simplified version of the
organizaton of the likely integration pro-
cess. As described clsewhere (5, 26), the
system will be improved in an incremental
fashion, including pathways not shown in
Fig. 1, such as feedback from the results of
integration into the matching stage of the
stereo and motion algorithms.

The highly parallel algorithms we have
described (29) map quite nacurally onto an
architecture such as the Connection Ma-
chine, which consists of 64K simple one-bit
processors with local and global connection
capabilicies. The same algorithms also map
onto very large scale integradon (VLSI)
architectures of fully analog clements (we
have successfully experimented with a ver-
sion of Eqs. 5 and 6, in which ! is a
continuous variable), mixed analog and dig-
ital components and purely digital proces-
sors (similar to a much simplified and spe-
cialized Connection Machine).

A plausible organization of visual incegra-
tion as sketched in Fig. 1 may be found
ultimately by theory and by computer ex-
periments of the tvpe described here. We
believe that psychophysical and physiologi-
cal data abour the integration stage in the
mammalian visual system may be helpful in
guiding our theoretical and computational
work. The system described here has already

triggered a series of psvchophvsical expen-
ments in order to establish whether and how
brnightness edges aid human computation of
surface discontnuities | 30).

REFERENCES AND NOTES

U T Dloggio and V Torre, 41 Memo N0 778
C BIP Paper No 001 Aruticud Intetligence Labo-
ratorv. Massachuseres [nsutute of Technology, Cam-
bndge. 1984).

2. M. Rertero, T Pogguoc V' Torre. 4/ ‘emo \o
924 . Aruficial Inteligence Laborator. Massachu-
sctes Insarure of Technologv. Cambndge. 1987 .
Aso Proc [EEE. in press.

3. T DPoggro. V Torre. C. Koch. Numre 317 34

1985,

4+ T DPoggro. thorking Paper No 295 Arufical [neells-

gence Laboratorv. Massachuserts [nstitute ot Tech-

nology. Cambridge. 1985,

E. B. Gamble and T Poggio. A ‘leme \o 470

Aruficial Inteligence Laboratorv. Massachuserts

Insature of Technology. Cambndge. (98~

6. J. Hurchinson, C. Koch. J Luo. C Mead. /EEE

Computer Magazine 21, 32 March 1988:

T Poggo er al . 10 Proceedings mage ! derstanding

Workeshop, Los Angeles, Februan 1987 Morgan

Kaufmann, San Mateo, CA. 1987, pp +1-34

8. P. B. Chou and C. M. Brown. in Proceedings image
Understanding Workshop, Los Angeies. February 1987
‘Morgan Kaufmann, San Mateo. CA. 1987, pp.
663-670.

9 P B.Chouand C. M. Brown. in Proceedings Interma-
tiomal fJoime Congerence on Aruficiat [ntethigence. Muan.
August 1987 (Morgan Kautmann. San Mateo. CAL
1987, pp. TT9-782.

10. P B. Chou and C. M. Brown. in Proceedings Image
Understanding Workshop, Cambndge. Apnl 1988,
{Morgan Kaufmann, San Marco. CA. 1988). pp.
214-221.

11. H. G. Barrow and }. M. Tenenbaum, in Computer
Vision Sysiems, A. R. Hanson and E. M. Ruseman.
Eds. (Acaderruc Press, New York. 19781 pp 3-26

12. §. Geman and D. Geman. (EEE Trans Puzem Anat
Mach [ntell PAMI-6, 721 . 1984

13. W. Hoff and N. Ahuja, in Procerdings ¢ +he Interma.
tonal Conterence on Computer |ision. London. Tune

1987 (IEEE. Washington. DC. 198~ . pp 284—
294.

14. A Blake and A Zisserman, isual Reconstmection
{MIT Press, Cambndge. MA. 19871

15. J. Alownonos and C. M. Brown. in Advamces
Computer Vision, C. Brown, Ed. (Erlbaum, Hilisdale,
NJ, 1987, pp. 115-163.

16. F.S. Cohenand D. B. Cooper, in Proceedings o1 SPIE
Conference on Ad i Intelligent Robotics Sysiems,
Cambridge, MA, }:fovcmber 1983 (SPIE, the [nter-
naoonal Society En Belling-
ham, WA, 1983). Opoca! Engincenng. s

17. J. L. Marroquin, S. Micrer. T. Poggo, in Proceedings:
Image Undersianding Workshop, L. Baumar- Ed..
Miarmy Beach, FL, December 1985 (Scicnufic Appb-
canons Internanonal Corporanon, San Diego. CA.
1985), pp. 293-309.

18. N. Metropolis, A. Rosenbiuth, M. Rosenbluth, A.
Teller, E. Teller, J Phys. Chem 21, 1087 1 1953

19. J. L. Marroquin, Probabilistic Solution of Inverse Prob-
lems, sd'auu. Massachuserts Insutute of Technology
(1988).

20. M. Drumbeller and T. Poggno, in Proceedings o/ IEEE
Conference on Robonics and Automanion (|[EEE, Wash-

DC. 1986), pp. 1439-1448.

21 1.1. Lirde, H. K. Biilthof, T. Poggo, in Proceedings
{mage Undernianding Workshop, Los Angeles, Febru-
arv 1987 (Morgan Kaufmann. San Mateo. CA,
1987), pp. 915-920.

22. D.W._Murray and B. F. Buxton, /EEE Trans DPatterm
Anal. Mach. Intell. PAMI-9 (no. 2), 220 (198

23. A L Yulle, AL Memo No 987 (Arufical ncels-
gence Laboratory, Massachusetss [nstitute of Tech-
nology, Cambnidge 1987).

24. H. Voorhees and T. Poggio. Natre 333, 364
(1988).

25. T. Poggo e al., i Proceedings Image (nderstanding
Workshop, L. Baumann, Ed., Miamu Beach. FL.
December 1985 (Scienufic Applications [nterna-

ws

REPORTS 419

#

uonal Corporauon. San Diego. CA, 1985), pp 25~
19

. T Poggio er i . in Proceedings Image Urnderstanding

Workshop, Cambndge, Apni 1988 ' Morgan Kauf-
mann, San Mateo, CA. 1988). pp. 1-12.

T A Cass. 0 :6ud . pp. 640-650

We have exploited the labehing of discontinuities E.
B Gamble, O Geiger. T Poggio. D Weinshall. in
preparanon’ n recognition cxpenmentss. [n addi-
uon, our integragon scheme allows us to segment
the wene into different depth planes, tor instance.
therebv considerably reducing the combinatones of
model-based recogmuon.

Our formulation of the integration probiem in germs
of MRF does not implv that the algonthms are
necessanly stochastic. Determinisac approximauons
to the more general stochastic schemes mav work
quite well, especialiv in situanons where redundant
and contradictory dara from several sources effec-
uvely set the iinal state of the svstem close to the
solunon. We have, in fact, found thar gradient
descent 1n the space of the depth and the line process
often works quite well. We routnelv use a mixed
determurustic and stochastic strategy (17) in which
the continuous (depth) process 1s determunisncallv

30.
31

32

updated whule the line process is updaced stochast-
callv. Orher strategaes mav aiso be etfectve (8), such
as space-vanant filtering, for instance. coupled with
edge detecuion. [n addinon. ume-dependent sched-
uies ot the coupling parameters can be usefui. They
are somewhat sumular to simulated annealing, which
<an also be effecuvelv used. though 1t 15 quite siow

H. H. Buithod. personal communication.

J. F. Cannv, IEEE Trans Patem Anal Mach Intell

PAMI-8 ino. 63, 679 (1986

Thus report describes research done within de Aru-
ficial Intethgence Laboratorv. Support tor the A. 1.
Laboratory’s artificial intelligence research 1s provid.
ed by the Advanced Research Projects Agency of the
Department of Defense under Armv contract
DACA7T6-85-C-0010 and in pare under Office of
Naval Research (ONR) contract NOOQ14-85-K-
0124. Support for thus research is also provided bv 2
grant from ONR. Engineenng Psvchology Divi-
ston, and bv a gift from the Aruficial Incelligence
Center of Hughes Aurcratt Corporaton to T. Pog-
0.

4 May 1988: accepted 12 August 1988

SCIENCE, VOL. 242

Fig. 3. ® Grev level image and associared
brightmess cdges 45 compured with a parallel
mplementation of Cannv’s algonthm 31
by Stereo Jdata . letti. reconstructed surtace
Jepth cenrerr and depth disconuinuities
tound bv the MRF integration scheme using
brightness edges night:. ¢ Motion daca tor
the same scene left:. the MRF reconstructed
fow center: and ies disconunuities. di Tex-
rure data ler, reconstructed unitorm rexture
regrons -venter' and texture disconuinuities.
@) Color data :hue:, the MRF segmentanion
in terms of constant retlectance regions . cen-
ter) and their boundanes.

SCIENCE, VOL. 42

(

quantiry analogous to temperature in stats-
oical mechanics, and L2 = SL(/) 1s an
energy funcoon that can be computed as the
sum of [ocal contributions trom cach latuce
site 1. The energy at cach latnce siee Ui £ s,
wself, a sum of the potenuals, L'ct /1, of
cach site’s cliques. A chque 1s aither a single
latuce site or a set of lathice sites such that
anv two sites belonging to it are neighbors
ot one another * 5 [™. As a simple exampie,
when the surtaces are expected to be smooth
ltke a membrane!. the prior energy can be
given tn terms of

where , .5 a neighboring site to « 1that s, «
and ; belong to the same clique).

[f 2 model of the observauon process is
available ; thar 1s. a model of the notse), then
one can write the conditional probabilicy
Pty f, of the sparse observation ¢ for any
given surface f. Baves's theorem then allows
one to write the posterior distnbution:

P(fg = %e'“" il 13)

In the example of Eq. 2. we have (for
Gaussian noise):

Lifg = Z(j} - N+ avid f ~)t "

where v, = 1 only where data are available,
and otherwise v, = 0. More complicated
cases can be handled in a simular manner (5).

The maximum of the posterior distribu-

Fig. 1. A sketch of the over-

computed analynically, but sample distnbu-
uons with the probabiiry distnbution of
Eq. 3 can be obraned by means of Monte
Carlo techruques such as the Metropolis
algorithm 1 18). These algorichms sample the
space of possible surtaces according to the
probability distribution Pt /¢ that 1s deter-
mined by the prior knowledge of the al-
lowed class of surtaces, the model of noise,
and the observed dara. In our implementa-
aon, a highly parailel computer generates a
sequence of surfaces trom which, for in-
stance, the surtace corresponding to the
maximum of P fg) can be found. This
corresponds to finding the global minimum
of L(f'g) {simulated annealing is one of the
possible technigues). Other critena can be
used: Marroquin (19) has shown that the
average surface f under the posterior distri-
bunon is often a berrer esumarte, which can
be obtained more cfficiently simply by find-
ing the average value of f ar each laruce
site.

One of the main artractions of MRF
models is that the prior probability distribu-
gon can be made to embed more sophisa-
cated assumpdons about the world. Geman
and Geman (12) introduced the idea of
another process, the line process, located on
the dual lammice (see Fig. 2), and representing
explicitly the presence or absence of discon-
tinuities that break the smoothness assump-
don (Eq. 2). The associated prior energy
then becomes:

Ui = 2= XL =1]) + Ble{(>5)

where I is a binary line element berween site
+ and 5. The term V(l) reflects the fact that

A

uon or other related ~sumates cannot be
all orgaruzaunon of the inte-
gramon stage (5, 26). The
ourputs of the carly visual
cues (or algonthms)—ste-
reo. mouon. texture, and
color—are coupled to therr

own lune process (the cross- ¢

es). that 18, their disconan-
winies. They are also coupled
to :-¢ disconunusaies in the

e

f Line
and
! continuous

111111

|eeeass

vut TRty processes

surtace propertiey—occiud-
ing edges :both extremal
edges and blades), onenta-
tion discontinuities, specu-
lar edges. texture marks (in-
cluding albedo discontinui-
ues), and shadow cdges.

S

[
F‘ Maps
of
physical discontinuities

The image data, esgemﬂv the sharp changes in brightess labeled here as c%ies, are input to the lartces
isc ¢ b

that represent the

onunuities 1n the physical propernies of the surfaces.

nghtness edges may be

completed before integration (1n some cases this may lead to “subjective contours™ by the equivalent of
a higher order MRF that reflects long-range constranes of colinearity and continuation and even
hvpotheses from the recognition stage, which s then expected to use the set of discontinuities at the top
as its man nput. Our present implementation does not couple the different nvpes of physical
discontinuities: sharp changes in brightness are directly coupled ro the line processes of each of the cues.
The individual modules are therefore integrated with each other only indrectly, through the brightness

edges.

21 OCTOBER 1988

certain configuranons of the line process are
more likely than others to occur. Depth
disconunuines are usually chemselves con-
unuous, nonintersectng, and rarelv 1solated
points. These properties ot phvsical discon-
unuines can be enforced locally by defiming
an appropnate set of energy values L'/)
for different configurauons of the line pro-
cess (5, 12, 17).

It 15 possible to extend the energy func-
aon of Eq. 5 to accommodate the interac-
ton of more processes and of thetr discon-
gnuides. [n parucular, we have extended the
energy funcaon to couple several of the early
vision modules (depth, modon, texture, and
color) to sharp changes of brighmess in the
image. This is a central point 1n our inregra-
gon scheme: here we assume that changes of
brighmess guide the computanon of discon-
anuides (1 the physical properues of the
surface, thereby coupling surface depth, sur-
face orientation, moton, texture, and color
cach to the image brightness data and to
cach other. The reason for the primary role
of the gradient of brightmess, as conjectured

b ojojojo|o]
olo|ojo]o]
olololo|o]
olojolols]
o|ojolo]o]

T T AF ats

¢ _

o I
00O ___f_l_l
) i

Depth process

neighborhood

Line process
vertical neighborhood

Fig. 2. (a) Coupled MRF lartices: the circles
represent the contnuous process (depth, mouon,
color, or texture) and the crosses {the lines in 19)]
represent the associated line process, that 1s, the
disconunuites. The neighborhoods of the conun-
uous _&roccss and of the line process are shown in
(€). The cost of an isolated line process s much
higher than that of a continuous line.

REPORTS 437

’

edges and blades), orientation discontinuities, spec-
ular edges, texture marks (including albedo discon-
tinuities), shadow edges. The image data - mainly
its intensity edges - are input to the lattices that
represent the discontinuities in the physical proper-
ties of the scene. Our present implementation does
not distinguish the different types of physical dis-
continuities: intensity edges are directly coupled to
the line processes of each of the cues. The inten-
sity edges can be completed and extended by the
equivalent of a higher order MRF that reflects con-
straints of colinearity and continuation, and even
hypotheses from the recognition stage, which uses
the set of discontinuities at the top as its main in-
put.

Figure 2: The Eye-Head System. See text.
Figure 3: See text.
Figure 4: See text.

Figure 5: A MRF lattice, consisting of depth (or color
or texture) process elements (circles) with vertical
and horizontal line elements (lines). The neighbor-
hood of the depth process and of the line process
are also shown, together with three of the several
configurations of the line process. The cost of an
isolated line process is much higher than that of a
continuous line.

Figure 6: Grey-level image of a natural scene pro-
cessed by the Vision Machine.

Figure T: Canny edges of the image in Figure 6. See
text.

Figure 8; See text.

Figure 9: See text.

Reading List

Barrow, H.G. and J.M. Tenenbaum. “Recovering In-
trinsic Scene Characteristics from Images,” In:
Computer Vision Systems, A. Hanson and E.
Riseman (eds.), Academic Press, New York, 1978.

Bertero, M., T. Poggio and V. Torre. “Ill-Posed Prob-
lems in Eacly Vision,” Artificial Intelligence Lab-
oratory Memo 924, Massachusetts Institute of
Technology, Cambridge, MA, 1986.

Besag, J. “Spatial Interaction and the Statistical Anal-
ysis of Lattice systems,” J. Roy. Stat. Soc., B34,
75-83, 1972.

Blake, A. “On the Geumetric Information Obtainable
from Simultaneous Observation of Stereo Contour
and Shading,” Technical Report CSR-205-86,
Dept. of Computer Science, University of Edin-
burgh, 19886.

Blelloch, G.E. “Scans as Primitive Parallel Operations,”
Proc. Intl. Conf. on Parallel Processing, 355-362,
1987.

Bliss, J. “Velocity Tuned Spatio-Temporal Interpolation
and Approximation in Vision,” Master’s Thesis,
Dept. of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology,
Cambridge, MA, 1985.

Brooks, R. “A Robust Layered Control System for a
Mobile Robot,” IEEE Journal of Robotics and Au-
tomation, RA-2, 14-23, 1987.

Bilthoff H. and H. Mallot. “Interaction of Different
Modules in Depth Perception,” Proc. First Inti.
Conf. on Computer Vision, Computer Society of
the [EEE, Washington, DC, 295-305, 1987.

Biilthoff, H. and H. Mallot. “Interaction of Different
Modules in Depth Perception: Stereo and Shad-
ing,” Artificial Intelligence Laboratory Memo 965,
Massachusetts Institute of Technology, Cam-
bridge, MA, 1987.

Canny, J.F. “Finding Edges and Lines,” Artificial In-
telligence Laboratory Technical Report 720, Mas-
sachusetts Institute of Technology, Cambridge,
MA, 1983.

Cornog, K.H. “Smooth Pursuit and Fixation for Robot
Vision,” Maaster's Thesis, Dept. of Electrical En-
gineering and Computer Science, Massachusetts
Institute of Technology, Cambridge, MA, 1985.

Dempeter, A.P., N.M. Laird and D.B. Rubin. “Maxi-
mum Likelihood from Incomplete Data via the EM
Algorithm,” J. Roy. Stat. Soc., B39, 1-38, 1977.

Drumbheller, M. and T. Poggio. “On Parallel Stereo,”
Proc. Intl. Conf. on Robotics and Automation,
IEEE, 1986.

Fahle, M. and T. Poggio. “Visual Hyperacuity: Spa-
tiotemporal Interpolation in Human Vision,” Proc.
Roy. Soc. Lond. B, 213, 451-477, 1980.

Geman, D. and S. Geman. “Relaxation and Annealing
with Constraints,” Complez Systems TecAnical Re-
port 35, Division of Applied Mathematics, Brown
University, Providence, RI, 1987.

Geman, S. and D. Geman. “Stochastic Relaxation,
Gibbe Distributions, and the Bayesian Restoration
of Images,” IEEE Trans. Pattern Analysis and Ma-
chine Intelligence, 8, 1984.

Geman, S. and C. Graffigne. “Markov Random Field
Image Models and their Applications to Computer
Vision,” Proc. Intl. Congress of Mathematiciany,
preprint, A.M. Gleason (ed.), 1987,

Gamble, E. and T. Poggio. “Integration of Intensity
Edges with Stereo and Motion,” Artificial Intells-
gence Laboratory Memo 970, Massachusetts Insti-
tute of Technology, Cambridge, MA, 1987.

Grimson, W.E.L. From Images to Surfaces, The
MIT Press, Cambridge, MA, 1981.

Grimson, W.E.L. “A Computational Theory of Visual
Surface Iuterpolation,” Phil. Trans. Roy. Soe.
Lond. B, 298, 395-427, 1982.

Grimson, W.E.L. “Binocular Shading and Visual Sur-
face Reconstruction,” Computer Vision, Graphics
and Image Processing, 28, 19-43, 1984.

Hildreth, E.C. The Measurement of Visual Mo-
tion, The MIT Press, Cambridge, MA, 1983.

Hillis, D. “The Connection Machine,” Ph.D. Thesis,
Dept. of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology,
Cambridge, MA, 1985.

Horn, B.K.P. Robot Vision, The MIT Press, Cam-
bridge, MA, 1986.

Hurlbert, A. “The Computation of Color Vision,” Ph.D.
Thesis, Dept. of Brain and Cognitive Sci-
ences, Massachusetts Institute of Technology,
Cambridge, MA, expected 1988.

Hurlbert, A. and T. Poggio. “Do Computers Need At-
tention?” Nature, 331, 12, 1986.

Hurlbert, A. and T. Poggio. “Learning s Color Algo-
rithm from Examples,” Artificial Intelligence Lab-
oratory Memo 909/Center for Biologicel Infor.
mation Processing Paper 25, Massachusetts Insti-
tute of Technology, Cambridge, MA, 1987,

Huttenlocher, D. and S. Ullman. “Recognizing Rigid
Objects by Aligning them with an Image,” Arts-
ficial Intelligence Laboratory Memo 937, Mas-
sachusetts Institute of Technology, 1987.

Ikeuchi, K., and B.K.P. Horn. “Numerical Shape from
Shading and Occluding Boundaries” Artifictal In-
telligence, 17, 141-184, 1981.

Kender, J.R. “Shape from Texture: An Aggregation
Transform that Maps a Class of Textures into Sur-
face Orientation,” Proc. Sizth Intl. Joint Conf on
Artificial Intelligence, Tokyo, 1979.

Kirkpatrick, S., C.D. Gelatt, Jr. and M.P. Vecchi. “Op-
timization by Simulated Annealing,” Science, 220,
1983.

Kruskal, C.P., L. Rudolph and M. Snir. “The Power
of Parallel Prefix,” Proc. Intl. Conf. on Parallel
Processing, 180-185, 1985.

Lim, W. “Fast Algorithms for Labelling Connected
Components in 2D Arrays,” TRinking Machines
Corp. Technical Report NAS6-1, Cambridge, MA,
1986.

Little, J., Blelloch, G.E. and T. Cass. “Parallel Al-
gorithms for Computer Vision on the Connection
Machine,” Proceedings Intl Conf on Computer
Vision, 587-591, Los Angeles, 1987.

Little, J., Bilthoff, H. and Poggio, T. “Parallel Optical
Flow Computation,” Proc. Image Understanding
Workshop, L. Bauman (ed.), Science Applications
International Corp., McLean, VA, 915-920, 1987.

Little, J., Biilthoff, H. and Poggio, T. “Parallel Optical
Flow Using Winner-Take-All Scheme,” in prepara-
tion.

Mahoney, J.V. “Image Chunking: Defining Spatial
Building Blocks for Scene Analysis,” Master The-
sis, Dept. of Electrical Engineering and Com-
puter Science, Massachusetts [nstitute of Tech-
nology, Cambridge, MA, 1987. Published as Ar-
tificial Intelligence Laboratory Technical Report
980, 1987.

Marr, D. Vision, Freeman, San Francisco, 1982.

Marr, D. and E. Hildreth. “Theory of Edge Detection.”
Proc. Roy. Soc. Lond. B, 207, 187-217, 1980.

Marr, D. and T. Poggio. “Cooperative Computation of
Stereo Disparity,” Science, 194, 283-287, 1976.

Marr, D. and T. Poggio, “A Computational Theory of
Human Stereo Vision,” Proc. Roy. Soc. Lond. B,
204, 301-328, 1979.

Marroquin, J.L. “Determiniatic Bayesian Estimation of
Markov Random Fields with Applications to Com-
putational Vision,” Proc. First Intl. Conf. on

EEEIIIIEE————

H
\

Computer Vision, Computer Society of the IEEE,
Washington, DC, 1987.

Marroquin, J.L. “Probabilistic Solutions of Inverse
Problems,” Artificsal Intelligence Laboratory
Technical Report 8§60, Massachusetts Ipstitute
of Technology, Cambridge. MA, 1985.

Marroquin, J.L. “Surface Reconstruction Preserving
Discontinuities,” Artificial Intelligence Laboratory
Memo 792, Massachusetts Institute of Technol-
ogy, Cambridge, MA, 1984.

Marroquin, J.L., Mitter S. and T. Poggio. “Proba-
bilistic Solution of Ill-Posed Problems in Computa-
tional Vision,” Proc. Image Understanding Work-
shop, L. Bauman (ed.), Scientific Applications In-
ternational Corp., McLean, VA, 1986. A more com-
plete version appears in J. Amer. Stat. Assoc., 82,
76-89, 1987.

Metropolis, N., A. Rosenbluth, M. Rosenbluth, A. Teller
and E. Teller. “Equation of State Calculations by
Fast Computing Machines,” J. Phys. Chem., 21,
1953.

Nishihara, H.K. “PRISM: A Practical Real-Time Imag-
ing Stereo Matcher,” Artifictal [ntelligence Lab-
oratory Memo 780, Massachusetts Institute of
Technology, Cambridge, MA, 1984.

Nishihara, H.K. and P.A. Crossley, “Measuring Pho-
tolithographic Overlay Accuracy and Critical Di-
mensions by Correlating inarized Laplacian of
Gaussian Convolutions,” [EEE Trans. Patiern
Matching and Machine Intell., 10, 1988.

Poggio, T., K.R.K. Nielsen and H.K. Nishihara. “Zero-
Crosesings and Spatiotemporal Interpolation in Vi-
sion: Aliasing and Electrical Coupling Between
Sensors,” Artificial Inteiligence Laboratory Memo
675, Massachusetts [nstitute of Technology, Cam-
bridge, MA, 1982.

Poggio, G. and T. Poggio. “The analysis of stereopsis,”
Ann. Rev. Neurosci., 7, 379-412, 1984,

Poggio, T. “Early Vision: From Computational Struc-
ture to Algorithms and Parallel Hardware,” Com.
puter Vision, Graphics, and Image Processing, 31,
1948.

Poggio, T. “Integrating Vision Modules with Coupled
MRFs,” Artificial Intelligence Laboratory Work-
ing Paper 285, Massachusetts Institute of Tech-
nology, Cambridge, MA, 1985.

Poggio, T. and staff. “MIT Progress in Understanding
[mages,” Proc. Image Understanding Workshop, L.

Bauman (ed.), Scientific Applications International
Corp., McLean, VA, 1985.

Poggio T. and staff. “MIT Progress in Understanding
Images,” Proc. Image Understanding Workshop, L.
Bauman (ed.), Scientific Applications International
Corp., McLean, VA, 1987.

Poggio, T., H.L. Voorhees and A.L. Yuille. “Regulariz-
ing Edge Detection,” Artificial Intelligence Lab-
oratory Memo 776, Massachusetts Institute of
Technology, Cambridge, MA, 1984.

Poggio, T., V. Torre, and C. Koch. “Computational
Vision and Regularization Theory,” Nature, 317,
314-319, 198S.

Richards, W., and D.D. Hoffman. “Codon Constraints
on Closed 2D Shapes,” Computer Vision, Graph-
ics, and Image Processing, 32, 265-281, 1985.

Reichardt W. and T. Poggio. “Visual Control of Ori-
entation in the Fly: I. A Quantitative Anaylsis,”
Quart. Rev. Biophysics, 3, 311-375, 1976.

Reichardt W. and T. Poggio. “Visual Control of Ori-
entation in the Fly: II. Towards the Underlying
Neural Interactions,” Quart. Rev. Biophysics, 9,
377-439, 1976.

Rock, 1. Orientation and Form, Academic Press,
New York, 1973.

Terzopoulos, D. “Integrating Visual Information From
Multiple Sources,” In: From Pixels to Pred-
icates, A.P. Pentland (ed.), Ablex Publishing
Corp., Norwood, NJ, 1986.

Tikhonov, A.N. and V.Y. Arsenin. Solution of II-
Posed Problems, Winston and Wiley Publishers,
Washington, DC, 1977.

Torre, V. and T. Poggio. “On Edge Detection,” Ar-
tificial Intelligence Laboratory Memo 768, Mas-
sachusetts Institute of Technology, Cambridge,
MA, 1984,

Ullman S. The Interpretation of Visual Motion,
The MIT Press, Cambridge, MA, 1979.

Ullman, S. “Visual Routines,” Cognition, 18, 1984.

Verri, A. and T. Poggio. “Motion Field and Optical
Flow: Qualitative Properties,” Artificial Intelli-
gence Laboratory Memo 917, Massachusetts Insti-
tute of Technology, Cambridge, MA, 1986.

Voorhees, H.L. and T. Poggio. “Detecting Textons and
Texture Boundaries in Natural Images,” Proc Intl.
Conf. on Computer Vision, Computer Society of
the IEEE, Washington, DC, 1987.

I ——

l N E NN RN NN DN

Waxman, A. “Image Flow Theory: A Framework for 3-
D Inference from Time-Varying Imagery,” [n: Ad-
vances in Computer Vision, C. Brown (ed.},
Lawrence Erlbaum Assocs, NJ, 1987.

Wryllie, J.C. “The Complexity of Parallel Computa-
tions,” Technical Report 79-387, Dept. of Com-
puter Science, Cornell University, [thaca, NY, 1979

)

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY
and
CENTER FOR BIOLOGICAL INFORMATION PROCESSING
WHITAKER COLLEGE

A.l. Memo No. 970 October 1987
C.B.L.P. Memo No. 027

VISUAL INTEGRATION AND DETECTION OF
DISCONTINUITIES: THE KEY ROLE OF INTENSITY EDGES

Ed Gamble and Tomaso Poggio

Abstract: Integration of several vision modules is likely to be one of the
keys to the power and robustness of the human visual system. The problem
of integrating early vision cues is also emerging as a central problem in cur-
rent computer vision research. In this paper we suggest that integration is
best performed at the location of discontinuities in early processes, such as
discontinuities in image brightness, depth, motion, texture and color. Cou-
pled Markov Random Field models, based on Bayes estimation techniques,
can be used to combine vision modalities with their discontinuities. These
models generate algorithms that map naturally onto parallel fine-grained ar-
chitectures such as the Connection Machine. We derive a scheme to integrate
intensity edges with stereo depth and motion field information and show re-
sults on synthetic and natural images. The use of intensity edges to integrate
other visual cues and to help discover discontinuities emerges as a general
and powerful principle.

(© Massachusetts Institute of Technology, 1987
Acknowledgments. This report describes research done within the Ar-
tificial Intelligence Laboratory. Support for the A.L. Laboratory’s artificial
intelligence research is provided in part by the Advanced Research Projects
Agency of the Department of Defense under Office of Naval Research (ONR)
contract N00014-85-K-0124. Support for this research is also provided by
a grant from ONR, Engineering Psychology Division and by a Hughes Air-
craft Corporation gift to the Artificial Intelligence Center for T. Poggio.

1 Introduction

One of the keys to the reliability, flexibility and robustness of biological visual
systems is their ability to integrate several different visual cues. Early vision
processes such as stereo, motion, texture, shading and color give separate
cues to the distance of three-dimensional surfaces from the viewer and to
their material properties. Integration of the evidence provided separately by
these cues can provide a more reliable map of the surfaces and their properties
than any single cue alone.

Thus visual integration is likely to be a key to understanding biological vi-
sual systems and to developing robust vision machines. Existing methods do
not seem capable of providing a general solution. Standard regularization[2]
provides a common framework for many early vision problems and leads to
the minimization of quadratic energy functionals. If standard regularization
is used to integrate information from different processes, the energy func-
tional consists of the sum of quadratic parts, each associated with a separate
process. This implies that the result is a linear combination of the different
cues (possibly with space-varying coefficients). Linear combination - say of
depth from stereo and from shading - does not seem, however, a flexible
enough integration method. Even more important, no instances of standard
regularization can handle discontinuities, because the solution space is re-
stricted to generalized splines(21,2]. As we will explain later, we believe that
detecting and representing discontinuities (for instance depth discontinuities)
is a key part of the integration step(21].

To overcome these difficulties we have developed an extension of regular-
ization that promises to deal simultaneously with discontinuities and with the
integration of vision modules. This extension is based on the use of coupled
Markov Random Fields?, introduced recently by Geman and Geman(9] and
extended by Marroquin, Mitter and Poggio[19]. The standard regularization
method for vision is a special case of this new approach.

1.1 The Role of Discontinuities

One of the most important constraints for recovering surface properties is
that the physical processes underlying image formation are typically smooth:

A different, interesting approach has be explored by Blake{3]

depth and orientation of surfaces are mostly continuous and so are reflectance
and illumination. The smoothness property is captured well by standard reg-
ularization. Surfaces and their properties, however, are not always smooth:
they are smooth almost everywhere, but not at discontinuities. Lines of
discontinuity are themselves usually continuous, relatively smooth, noninter-
secting curves. It is critical to detect the discontinuities reliably, because
they usually represent the most important locations in a scene: depth dis-
continuities, for instance, often correspond to the boundaries of an object
or of a part. Furthermore, discontinuities play a critical role in fusing in-
formation from different physical processes. The reason is clear: in smooth
regions, the physical processes are coupled together by the imaging equation,
and all contribute to image formation. However, the coupling is difficult to
know precisely: it depends on quantities such as the form of the reflectance
function. The effects of discontinuities are instead robust and qualitative: for
instance, depth discontinuities usually correspond to intensity edges. There-
fore, discontinuities are ideal places for integrating information. Furthermore,
partial information about discontinuities in a single process can be detected
relatively easily. Several types of motion discontinuities, for example, can
be measured with simple operations on the time-dependent intensity array,
especially if the interframe interval is small. Partial albedo discontinuities
also are often detectable using simple operations. Intensity edges are de-
tected quite reliably by the Canny edge detector. However, the fast, rough
detection of discontinuities performed by these early operations is noisy and
incomplete: it must be refined by integrating them across processes and by
exploiting constraints on the continuity of discontinuities.

In summary, discontinuities: 1) represent the most useful information, 2)
are easy to detect (though in a partial and possibly noisy way) and 3) provide
good locations to integrate different cues.

1.2 Coupled Markov Random Fields

Markov Random Fields for image modeling have seen increasing use since
the work of Geman and Geman[9]. Their utility for image modeling de-
rives from several MRF characteristics. MRFs provide a natural way to
impose general image properties of smoothness and continuity, for example
of depth and motion, while also incorporating discontinuities. Bayes' rule
establishes a relationship between the possibly corrupted observed data and

2

‘

the desired scene data. Solution methods are available, though often time
consuming. Some recent MRF applications have involved scene segmentation
using depths{18], texture{6] and motion[20)].

A Markov Random Field on a lattice can be represented as a lattice of
sites, each one with a random variable. The value depends probabilistically
on the value of neighboring sites. The rules governing this local dependence
can be given in a variety of ways and can be made to capture constraints
such as the continuity of a surface (if the MRF represents depth values).

Our idea is to associate a MRF on a lattice to each physical process to be
integrated and another (binary) MRF to its discontinuities (see figure 1). The
lattices are coupled to each other to reflect the interdependence of the corre-
spcnding processes in image formation. Thus the various MRF's mirror the
different physical events that underlie image formation: surface and surface
discontinuities, spectral albedo and albedo discontinuities, shadows, surface
normal, and so on. Physical constraints apply to each of these processes in-
dependently. In addition, there are constraints between these processes (for
instance between depth and surface normal). The image data constrain the
way the processes combine. Note that consideration of sequences of images in
time will introduce additional powerful constraints such as rigidity. The con-
straints on the surfaces are local conditions (such as smoothness, necessary
mainly because of its regularizing role in the face of omnipresent noise) valid
everywhere ezcept at discontinuities. As we discussed earlier, discontinuities
are critically important and should be detected early.

Notice that the coupling of the line process with the associated continuous
process provides a module that combines cegion-based with boundary-based
segmentation (see figure 1).

The local potentials underlying the a priori probability distribution of the
MRFs represent the constraints on the physical processes (smoothness, posi-
tivity, values within certain bounds, etc.); the coupling between MRF's repre-
sents the compatibility constraints between processes. The device of coupled
MRF's provides an ideal tool to impose local constraints such as smoothness,
allowing at the same time an explicit role for discontinuities through the line
processes{9] and similar processes such as occlusions{19]. Our new idea is to
incorporate additional observable discontinuity data provided by algorithms
specialized to detect sharp changes in the observed properties of intensity,
motion, stereo disparity, texture, and so on. The observable discontinuities

)
8
2
3
S
B
g
2
2
>
=
9
=

Effective
INlumination

AR RN

Figure 1: MRF lattices representing the output of different early processes
and their discontinuities (the crosses represent the sites of the binary line
processes). Each representation, for instance depth, is coupled to its discon-
tinuities and to other cues such as intensity or motion.

provide an initial rough solution to the segmentation problem. Using the
MRFs for estimating the fields gives increasingly precise solutions, simulta-
neously filling in the continuous regions that are only sparsely observable.
The solution at each iteration is available to later modules, such as recogni-
tion.

1.3 The Key Role of Intensity Edges

One of the results of our integration work is that intensity edges play pri-
mary role in guiding the search for discontinuities in other processes (for
instance depth). The point seems so important that we would like to phrase
it as a rather general conjecture on the proper organization of the integration
stage: intensity edges guide the detection of discontinuities in the other phys-
ical processes, thereby coupling surface depth, surface orientation, shadows,
specularities and surface markings to the image data and to each other.

The reason for the critical role of intensity edges is intuitively clear -
usually changes in surface properties (depth, orientation, material, texture)
produce large intensity gradients in the image. Under the assumption of
opacity and of a simple imaging model (the reflectance function is assumed
to contain a lambertian and a specular term), there are six physical causes
for large intensity gradients in the image: occluding edges (eztremal edges
and blades), folds, shadow edges, surface markings and specular edges. In
addition, motion discontinuities are usually coupled to intensity edges. It is
for exactly this reason that edge detection is so important in artificial - and
probably also biological - vision.

1.4 Plan of the Paper

In this paper we introduce a method for detecting and reconstructing depth
discontinuities by using the information provided by intensity edges. We do
the same for motion discontinuities. First we introduce the Markov Random
Field formalism. The use of intensity edges for surface interpolation is dis-
cussed next, together with the derivation of the associated MRF model. We
then describe our Connection Machine implementation and the results on
synthetic and real data. Finally the discussion focuses on the open problems
and on the implications of our results for the general problem of integrating
all vision modules.

2 Coupling Intensity Edges with Sparse Depth
Data

To illustrate our approach we consider the specific and important problem of
computing an approximate surface and especially the surface depth disconti-
nuities from sparse depth data[10,25,18]. The main new idea here is to exploit
the integration of additional vision cues. In particular we describe a scheme
in which intensity edges are integrated with sparse depth data. Sparse depth
data arise from the output of feature~based stereo algorithms. Typical stereo
algorithms provide depth data at a subset of image features{15,10,8). These
features might be a Laplacian filter’s zero-crossings from one of the intensity
images. The depth information is computed by measuring pixel displace-
ments (disparity) between corresponding image features. As is typical of all
known stereo algorithms, the disparities are plagued by errors precisely at
depth discontinuities where surfaces are usually occluded.

The problem, then, is to smooth and fill in the sparse depth data (i.e.,
reconstruct the surface), while detecting the critically important depth dis-
continuities. Prior attempts at depth discontinuity identification allowed the
discontinuities to form anywhere in the image provided the depth difference
between neighboring sites was significant[18,24]. Due to the sparseness and
noise in the depth data, the identified discontinuities are: 1) offset from and
2) ragged or wiggly compared with the correct discontinuities. These limita-
tions become more serious when the images contain a large range of depth
differences, as in natural images.

Because of the constraints on image formation discussed earlier, the cor-
rect depth discontinuities will, in almost all cases, correspond precisely to the
locations of intensity edges. Our integration scheme exploits this by restrict-
ing depth discontinuity formation to a subset of the intensity edges. This
restriction ensures that the smoothness and continuity of discontinuities can
be no worse than the intensity edges themselves. In addition, the difficult
problem of Ml}' parameter speciiication is simplified since this integration
scheme proves less sensitive to MRF parameter variations, particularly when
the depth data contain a large range of depth differences.

There are some cases in which discontinuities will not occur at intensity
edges. Any object that blends in with its background presents such a case.
This situation occurs rarely in natural scenes; yet, for practical reasons such

as camera underexposure or saturation, the object may blend in with the
background at some locations. However, for these cases, the point is some-
what moot, since without intensity edges, feature-based stereo or motion
algorithms will not provide depth or motion data.

A more general situation arises when the features used for stereo or mo-
tion are different from the discontinuity-limiting features. This is desirable
since the continuity constraints used by stereo and motion algorithms assume
that the features used for matching are located on surfaces. Thus stereo and
motion algorithms should use high resolution, dense features that identify
surface markings as opposed to bounding contours which in general corre-
spond to surface locations that are different in the two images of a stereo
pair. The discontinuity-limiting features however can be chosen to better
correspond to object boundaries.

The results section contains examples in which the discontinuities are
identified and the surface reconstructed both with and without the benefit
of intensity edge information. The next section presents a limited overview
of MRF particulars and contains the appropriate MRF energy function for
integrating intensity edges with, in this case, the sparse depth data produced
by a stereo algorithm.

3 MRF Formulation for Stereo and Inten-
sity Edge Coupling

The theory of Markov Random Fields can be found elsewhere[9,17]. We
present only an overview here followed by a description of the energy func-
tions used for integration.

The Hammersley-Clifford theorem states the equivalence between a MRF
and a Gibbs distribution as follows. If X is a MRF on a lattice S with respect
to the neighborhood system G, then P(X = w) is given by:

P(X =) = e $08) 1)
Z is a normalization factor, T is the temperature and U(X) is the energy

function. The temperature parameter, T, could be absorbed into U(X);
however, when the solution method is discussed, T proves useful as a separate

-
i
R
i
i
i
i
i
i
i
0
i
R
i
i
N
i
i

variable. The energy function is of the form:
U(X) = 3_Uc(X). (2)
c

The sum of the potentials, Uc(X), is over the neighborhood’s cliques. A
clique is either a single lattice site or a set of lattice sites such that any two
sites belonging to it are neighbors of one another. The function P(X = w)
is called the prior distribution and abbreviated here by P(X).

The prior distribution on X, where X, for example, might be the recon-
structed surface, must be determined based on some observations or input
data, Y. To relate X to Y Bayes’ formula is used,

P(Y)X)P(X)
TR @

The observations, Y, are obtained conceptually by degrading X, such as by
the addition of noise or blurring. If the type of degradation is known, the
distribution P(Y|X), can be computed. Marroquin(17] has shown that for
the case of zero-mean white Gaussian noise, P(Y'| X) is a Gibbs distribution
with potential:

U(Y|X) = Z;U.-m,\'); UdY)X) = —avi(zi - 3)*. (4)
1€

P(X|Y) =

The sum is over all lattice sites and

~_] 1, if input data exists at lattice site ¢ (5)
%=1 0, otherwise.

When this result for P(Y)|X) is combined with the MRF prior distribution,
P(X), and Bayes’ rule the a posteriori distribution P(X|Y) is:

PUIY) = o { -2 S Ux1Y)] ©)

for Ui(X|Y) = U(X) + U(Y|X) and with Z a normalization constant inde-
pendent of X. This a posteriori distribution provides the likelihoods for all
possible states X, given the observable data Y.

Given the posterior distribution P(X|Y) and the ezternal field Y the de-
sired field X can be retrieved once a suitable error criterion is specified. The

8

Mazimizer of the Posterior Mean (MPM) reduces the problem of annealing
and has been successfully applied for our results. With the criterion specified,
the relaxation algorithm for solution is largely determined. The question of
a suitable error criterion and algoriunmic consequences has been thoroughly
discussed by Marroquin(17].

The problem has now become one of specifying the MRF potentials,
Ui(X) and Uy(Y|X). The potentials impose the physical constraints of con-
tinuity and smoothness of surfaces (except at depth discontinuities) along
with continuity and smoothness of depth discontinuities. These constraints
are imposed by tailoring the energy function to minimize the energy (maxi-
mize the probability) when the state occupied satisfies the desired physical
constraints. Typically this choice is empirical although one might envisage
estimating the prior associated with, for instance, depth smoothness from a
specific class of surface data.

The MRF state space used herein is similar to that of Geman and Geman(9)
along with Marroquin{17] where each lattice site is composed of a depth pro-
cess and two line processes, X = {F,L}. The depth process, F, is a con-
tinuous random variable whose value is related to the distance of a surface
point from the observer. The value of F at site ¢ is denoted as f; where
~o0 < f; < o0o. The depth process neighborhood system to site ¢ consists
of the four nearest neighbors: east, south, west and north, to i. Although
a continuous random variable should not be updated using the Heat Bath
algorithm, the depth process can be deterministically updated{17], provided
the MRF energy is suitably defined. Figure 2 illustrates the MRF lattice
with the depth and line processes.

The line process used here, L, contains a vertical and horizontal orien-
tation that are conceptually located between lattice sites. The vertical line
process is located between its lattice site and the neighboring eastern lat-
tice site, whereas the horizontal line process separates its lattice site and
the nearest southern lattice site. Each orientation is a binary random field,
I! € {0,1} where the scripts on I/ denote the line process that separates
lattice site § from j. The horizontal line process at site ¢ is denoted as {};
the vertical line process is IY. Smoothing of the depth process is inhibited
when the line state is on, I/ = 1, since smoothing should not occur across
depth discontinuities; otherwise, depth process smoothing is performed. An
on state signifies the presence of a depth discontinuity. The conditions for

olo|o|o]o]

@ Slefololel
ololololel s
olo|olo]o]
ojolo|o|o]

MRPF Lattice —'_

o D
G I

° 1
Depth Process I
Neighborhood Line Process

Vartieal Nelghborhood
| North

(e) — a—

||

l ’ | East l Central
S T O e O I
West '

I l—l Line Process
Vartical Cliques

I South

Figure 2: (a) A lattice site is composed of a single depth process (illustrated
with a circle) along with a vertical and a horizontal line process. The MRF
Lattice consists of a rectangular grid of these lattice sites. (b) The neigh-
borhood for the depth process and the vertical line process neighborhood.
The black dot in the line process neighborhood indicates the lattice site for
this neighborhood. (c) The five maximal cliques (north, east, south, west
and central) for the vertical line process are shown. In this paper we only
consider configurations of the central clique. This is equivalent to assigning
zero energies to all configurations of the other four cliques.

10

depth discontinuity formation are encapsulated in the MRF energy function
presented subsequently.

The external fields to the MRF are the sparse depth information and the
intensity edges. The sparse depths, G, are represented by two variables, g;
and +; for site i. The value g; is analogous to f;; it is continuously valued
over the real numbers, although in practice, since g; is provided by stereo
output, it is discrete. The variable 4; encodes the sparseness of the stereo
output and is defined as in equation 5.

The intensity edges are represented by the field, £. This field is similar to
the line process, L, except that e/ = 1, rather than indicating the presence of
a depth discontinuity, permits the formation of a depth discontinuity between
lattice site i and neighbor j. The MRF energy is designed so that e/ = 0
implies (in the present implementation) I} = 0 for all i,; € S. An edge
detector, such as Canny’s[4], will mark a site i as an edge, but ¢! marks
potential discontinuities between sites + and j. To resolve this ambiguity, if
an edge is at site i, then e = 1 where k is each of the nearest neighbors to
site . This intensity edge field, E, along with G comprise the MRF external
field Y such that Y = {G, E}.

Given the external fields, Y, and the random variables, X, equation 6
provides the posterior distribution with the MRF energy given as

Ulzly) = 3 Ud=ly)

U(zly) = an(fi — 9 + L (L= 8)(fi = £;)'+
JEnn
¥ [BUc) + 80 -] (7
JESA V>

The first term in this equation is the coupling between the depth process
and the sparse and noisy input data. The coupling factor, a, is related to the
noise in g. For noiseless data, a — oo thereby ensuring f; = gi. Otherwise,
when a = 0 no input data coupling occurs and f is smoothed by the term
involving (f; — f;)? in equation 7. The precise relation between a and the
noise depends on the noise model assumed. For a model of measurement

that includes Gaussian random noise

1
QA = =
az

11

where o is the gaussian’s half width at half maximum{17]. Note that if the
noise model’s parameters vary locally, it might be appropriate to vary a
locally as

Local variation in noise parameters does occur in the stereo algorithm of
Drumbheller and Poggio{7]; this variation is reflected in the stereo match scores
of that algorithm. The present paper does not address this issue; here we
keep a constant, usually in the range 0.1 to 2.0. The input data coupling
to f occurs when ¥ = 1. Typically 5 to 10% of the lattice sites have input
depths associated with them.

The last term in equation 7 implements the integration scheme between
sparse stereo depths and intensity edges. The term forbids depth discontinu-
ity formation except where an external edge exists. Discontinuity formation is
prevented by letting ' — co. When I/ =1 and ¢} = 0, this term contributes
a large energy, Ui(z]y) — oo and the associated probability for I/ = 1 is zero.
At sites where e¢] = 1 this energy term contributes nothing and the depth
discontinuity formation is determined by the other factors in equation 7. The
problems of misalignment might be handled by suitably modifying this term
in the energy Ui(z|y) to produce a it cone of influence or, for a simple case,
by “thickening” the input intensity edges. For instance, we may use instead
of e] in equation 8, e] » G, where » denotes convolution and G is a gaussian
or another appropriate cone of influence function. The results presented in
this paper do not utilize a cone of influence.

The second and third terms in equation (7) encapsulate our prior expec-
tations concerning depth discontinuities and surface reconstruction. They
compose the potential U(X) of the prior distribution (equation 1). These
two terms ‘compete’ in the sense that turning on a line costs energy SUc(!?)
but saves energy (f; — f;)*. The interplay of these two potentials largely
determines the formation of depth discontinuities where el = 1. The second
term couples the line and depth processes, the third term determines the
line process clique energy. This line and depth process coupling is summed
over the nearest neighbors, nn, to site i, with each neighbor contributing an
energy (f; — f;)? when I = 0.

The quadratic term, (fi—f;), tends to smooth the depth process since it
is minimized when f; = f;. Depth discontinuities have a higher probability
of forming when the energy to create a line, BUc(#), is less than this energy

12

to smooth the depths. The factor 3 is a free parameter that determines what
size depth difference is likely to produce a depth discontinuity. Specification
of 3 is largely image dependent and, although a suitable range has been
determined, a general theory specifying /5 remains elusive. The line process
clique energy will be examined in detail later.

The Heat Bath algorithm cannot be simply applied to equation 7 since
the f, are continuous variables. Instead we employ a technique to smooth
the depth process deterministically, but to update the line process stochas-
tically with the Heat Bath algorithm{17]. With the line process state fixed,
the MRF energy of equation 7 is non-negative definite quadratic with a sta-
ble and unique fixed point for the f; (practically, 3 never contributes since
the configuration ¢ = 0 and ! = 1 has a vanishing probability). In this
situation, the depth process can be smoothed deteministically to find the
fixed point. After this fixed point in depth is determined, the line process is
stochastically updated, the new fixed point in depth is determined and the
scheme is repeated.

Once the line process approaches equilibrium (roughly 1000 iterations),
statistics are gathered to compute the MPM estimate. The MPM estimate is
computed from P(I] = 1) = 3 I!, where n is the number of iterations over
which statistics are gathered(17]. When P(I! = 1) 2 (0.5+1//n), statistical
fluctuations about 0.5 are reduced and the MPM estimate is turned on to
mark a discontinuity. Use of the MPM estimate does not require annealing
but the a posteriori distribution’s coupling parameters must produce a rea-
sonable amount of line process agitation thereby sampling much of the line
process sample space.

3.1 Choice of Line Clique Energies

Figure 2 shows the line process neighborhood for the vertical line process.
Of the five cliques shown for this neighborhood, only the clique centered
about the vertical lattice site has, by design, a non-zero potential Ug(!}).
This potential depends on the 256 possible configurations associated with
the clique. The desirable configurations are a small subeet of all poesible
configurations and they impose the constraints of smoothness and continuity
on the depth discontinuities. These constraints are embodied in the following
five heuristics which divide the desirable configurations into classes:

13

.

L) . L]
Line Creation Straight Angled
Liae Grewth

Cornered Straight Aagled
Lins Completion

| | .
L] . . . ¢ umm
. . . L] . L] . .
-— ewm - -—
o e

Ceornered Straight Angled
Tee Completion

Figure 3: The four classes of non-forbidden. line configurations for the verti-
cal line process. A dot, ‘.’ represents an off state; on states are shown with
their oriented lines. The symmetry operations producing the other allowed
configurations are discussed in the text. The horizontal line process configu-

rations are identical provided the vertical line process cliques are rotated by
90 degrees.

o Turn on a lone site provided a ‘large’ depth discontinuity is present
[Line Creation].

o Turn on a site extending an already present line segment even if the
depth discontinuity is ‘small’ [Line Growth]..

o Always turn on a site if doing so would connect two line segments [Line
Completion].

o Allow tees to occur infrequently where supported by at least a ‘small’
depth discontinuity [Tee Completion].

o All other configurations should occur rarely if at all [Forbidden).

Examples of the first four classes are shown in figure 3. In addition
to these configurations, three symmetry operations produce the other non-

14

forbidden classes. These symmetry operations are: rotation by 180 degrees
about an axis perpendicular to the page, reflection about the vertical axis (for
the vertical line process orientation) and the 180 degree rotation followed by
the reflection operation. With these symmetry operations and clique classes,
a total of 22 unique configurations are allowed from the original set of 256.
When [y = 0 (line is off), the clique potential is 0. However, when Y = 1, the
clique energy is determined by the five classes; this is the energy required to
turn on the line.

The line process clique considered here is only one of the cliques associ-
ated with the neighborhood shown in figure 2. In previous work(9,17], the
smaller neighborhood did not readily produce lines of any orientation; the
cliques tended to create vertical or horizontal line segments. The ‘large’
neighborhood used here (though incompletely, because we assign zero en-
ergies to several cliques), does encourage isotropic line formation without
exacting too high a computational penalty.

4 Stereo and Synthetic Image Results

The MRF scheme for coupling intensity edges to sparse stereo depth data
has been implemented on a Connection Machine{ll]. The sparse depth data
and intensity images from both real stereo and synthetic images have been
examined. This section presents these image results for some typical images.

4.1 Connection Machine Implementation

The Connection Machine (CM) is a fine-grained parallel computer manufac-
tured by Thinking Machines Corporation. We used their CM-1 model with
16k processors. Each processor is connected to its four nearest neighbors
(north, east, south and west) in a two-dimensional grid, the NEWS network,
and each 16 processor group is connected to a 12-dimensional hypercube, the
Router. These two communication modes allow fast access between neigh-
boring processors and logarithmic-time access between any two processors.
Each processor is a simple 1-bit processor with 4 kilobits of memory. All
processors execute a single instruction stream. The CM was configured to
match the image size, 256 x 256, by using virtual processors.

15

For the MRF implementation each CM processor represents an MRF lat-
tice site. This configuration proves ideal for implementing the MRF cliques
over the CM NEWS network. The limited number of non-forbidden line
clique states and energies are stored in tabular form at each processor. De-
termination of the line clique state requires access to the four nearest neigh-
bors plus the north-east (south-west) neighbor for the vertical (horizontal)
orientation. At the image borders, the line processes are always on, thereby
conveniently preventing depth process smoothing beyond the borders.

The MRF input data was obtained from two previously implemented
CM-1 algorithms. For the real stereo depth data, MIT’s Eye-Head system
provided the stereo pair and the Drumheller-Poggio CM-1 stereo algorithm|8]
produced the disparity data at a subset of DOG zero-crossing features. The
intensity edges came from Todd Cass’ [13] implementation of Canny’s edge
detector. These edges do not coincide with the stereo algorithm features.

When synthetic data was used, the image depths were produced by the
TMC 3-D Toolkit as was a dense depth map. A sparse map was obtained
by randomly discarding 90 to 95 percent of the depth values. Uniformly
distributed random noise was added to the synthetic sparse depth data.

The initial line process state is set to mimic the intensity edge map as pro-
vided by the Canny edge detection stage. The MRF depth values are created
by using the sparse input depths to “brush fire fill” and then by determin-
istically smoothing the depth values. During the deterministic smoothing of
the initial depth process, the depth external field coupling, a, is infinite.

4.2 Results

Figure 4 shows the MRF results on a synthetic image for two intensity edge
coupling schemes. In the first scheme, intensity edges are not used in the
MRF process. This allows depth discontinuities to form anywhere and is
achieved by setting ¢ = 1 for all i,j € S. The upper left image shows the
synthetic scene from which the sparse depth data was derived. The lower
left image in Figure 4 illustrates the depth discontinuities identified with the
MPM estimate of the MRF process. When the depths vary rapidly, many
closely spaced discontinuities are formed. These discontinuities are ragged
and also displaced from the actual object boundaries (as marked by intensity
edges). The reconstructed depth surface is not shown.

The second scheme strongly penalizes depth discontinuity formation ev-

16

Intensity Image

v

Sparse and Noisy Depth Data
from Synthetic Object Model
i) .

MRF without - MRF with
Intensity Edges Intensity Edges

,

Depth Discontinuities

Intensity Edges

Depth Discontinuities

- "-"\'
¢ ﬂl ‘J—r—-\‘: Al_- "} -
2) v{]
/ o
|
’ 0 !
[N A
- ! w
o .
’ L ' '/7 :
\.A- R /—) §o—a .~ T—

Figure 4: The MRF process and its result on a synthetic image. Almost
all depth discontinuities are found when intensity edge coupling is utilized.

The steepness of the geodesic dome’s boundary leads to false discontinuity
identification.

17

e

--------ﬂ--

- -
AR
"‘,/ /"E# r
- L l /’ q"‘
R ~
PSRN
:’/’/’,* \\Q '
2, AT S
i Aean
L OIS . N
s s v ! “} "
v A 8 'J.;‘. P/"
IR AT R

Intensity Image

v

Sparse and Noisy Depth Data
from Stereo Algorithm
|

Intensity Edges

¢ -
MRF without : MRF with
Intensity Edges Intensity Edges

l

Depth Discontinuities Depth Discontinuities

E' @ ~ < T S
\ - y L~

} - ‘. ' N R
L 9) H ' ': -
L.) ‘5 ’ ‘ﬁ - ,"\ - '
f’j{) -_ / E

/

Figure 5: The MRF process and its result on a real image with computed
stereo data. For both cases the texture on the newspaper has disappeared;
however, without intensity edges, the small box on the upper right also dis-
appears. When intensity edges are used some of the box’s borders persist
and the newspaper border is well localized.

18

erywhere except at the intensity edges shown in the upper right image of
Figure 4. The external field, e}, equals one only at the intensity edges pixels.
The depth discontinuities found are shown on the lower right of Figure 4.
Nearly all the intensity edges due to surface orientation and texture are
eliminated. In some places, such as near the geodesic sphere’s boundary, the
surface slope alone is large enough to yield a depth discontinuity.

Another representative image-this time a real image-is shown in Figure 5
where a stereo algorithm produced the sparse depth data. The right image
from the stereo pair appears on the upper left of Figure 5. This scene consists
of a tall stack of newspapers and a small box or carton. The stereo depth
data and the reconstructed surface are not shown. Once again we consider
two cases, depending on whether or not the intensity edges are utilized.
Without the intensity edges, as with the synthetic stereo results, the depth
discontinuities are poorly positioned and ragged. However, with the intensity
edges (upper right of Figure 5), the discontinuities on the lower right agree
reasonably well with the object boundaries.

For these stereo image results, a few difficulties are worth mentioning.
A large depth discontinuity along the top left of the newspaper boundary
is not found. The stereo algorithm produced very poor depth data at this
location and positioned the depth change roughly 5 pixels above the news-
paper intensity edge used by the MRF process. Also the small box’s shadow
yielded a small disparity that created a depth discontinuity. The box itself
also had a small disparity so that modifying MRF parameters to eliminate
the shadow discontinuity would have eliminated the box’s discontinuity. This
sort of variability is inevitable until a reasonable method for local parameter
estimation is developed.

Situations can arise wherein discontinuity detection is hampered when the
intensity edge sites do not coincide with the sites at which external depth
data are provided. Figure 6 displays a possibility where a depth discontinuity
should form between features A-1 and A-2 inclusive. However, the discon-
tinuity can only form on the intensity edge at B-1 and, because of depth
filling and smoothing, the discontinuity may be washed out. The washing
out depends primarily on the depth difference. the separation between edges
A-1 and A-2 and the smoothing parameters. If edge B-1 were on A-1 or
A-2, then the discontinuity could form readily. One approach to avoid this
coincidence problem is to project a cone of influence about the intensity edge

19

Edge A-2

Edge A2 Disparity = 0

Disparity = 10

\
\
{
i
l

[ldn 8-1

———— Steree Dlop‘ruln Exist
- s ws Intensity Bdge

Figure 6: The disparities at edges A-1 and A-2 suggest that a depth discon-
tinuity should be formed somewhere between A-1 and A-2. Yet, because of
depth process smoothing, the depth difference at intensity edge B-1 may be
too small to support a discontinuity. No discontinuity will form due to this
‘misalignment’ of edges.

location. Then the discontinuities could form not only at the intensity edges
but also for one, two or more pixels on either side of the edge. This has
the disadvantage of leading to somewhat poorly localized and ragged edges.
Straightness of the resulting line process is enforced locally by the intrinsic
prior of the line process when the cone of influence is no larger than the
line process neighborhood. Another approach, used here, was to avoid the
washing out by an appropriate selection of the coupling parameters. More
work must be done in this area.

5 Coupling Intensity Edges to Sparse Mo-
tion Data

The simplicity of limiting discontinuities to a subeet of intensity edges im-
mediately suggests its use for other vision modules. The same principles
employed for the stereo depth application have been utilized on motion data.
As with depths, motion fields both from synthetic data and a feature-based
motion algorithm have been used to identify motion discontinuities and to
smooth and fill the sparse motion field. The difference is that motion is a

20

vector field: depth is not.

The MRF energy of equation 7 is modified by replacing the random field
variable, F', by a vector random field, M. Likewise, the external field, G,
becomes a vector field, N. The MRF energy is:

Ui(zly) = avilM; = Ni* + 3 (1 = 1)|M; — M,+

JENN

T [BUc) + 81 - et (8)
JESA V>
where M = ué, + vé, with a similar definition for N and where |A7{. - A?,-l’ =
(u; — u;)? + (vi — v;)%. The input field N contains the two components of
the optical flow; the output is M or equivalently, (u;, v;) for all lattice sites 1.
With this energy formulation, motion field direction discontinuities are not
identified, only magnitude discontinuities are marked.

A specialized motion algorithm, such as Horn and Schunk’s{12], can be
used to compute the motion field for input to the MRF. The motion data
employed here derive from a parallel algorithm{14] that provides match scores
much like the previously used stereo algorithm. Match scores provide a local
measure of trust for the motion data but are not utilized here. Rather than
splitting the problem into early and middle vision parcels, an alternative
approach uses the MRF machinery to compute the motion field in addition
to segmenting the images{20].

Figure 7 illustrates some results on a simple synthetic motion sequence.
The image contains a white square with a small grey texture marking moving
diagonaily across a grey and black background. The motion field is non-
zero only on the white square and its texture marking where both z and
y components exist. Roughly 5% of the image motion data is input to the
MRF. The bottom half of figure 7 shows the motion discontinuities identified
both with and without intensity edge information. Again, the intensity edges
significantly enhance the localization of “nice” motion discontinuities.

21

S

Intensity Image

- Intensity Edges

Sparse and Noisy X-Y Optical Flow
from a trivial Synthetic Image
|

v

MRF without : MRF with
Intensity Edges Intensity Edges

Motion Discontinuities Motion Discontinuities

Figure 7: The MRF process and its result on synthetic motion data. Motion
data exists at only 5 percent of the image pixels.

6 Discussion

6.1 Central role of intensity edges

The results presented here support the idea that intensity edges can be used
as the primary cue to help detect, complete and precisely locate the discon-
tinuities in the other processes such as depth, motion, texture and color. As
we mentioned earlier, the reason for this is that discontinuities in depth, sur-
face orientation, motinn, texture and color typically originate large gradients
in the image intensity, i.e. edges. Texture boundaries, for instance, can be
synthesized without any intensity edge; it is sufficient to look around to con-
vince ourselves that in the real world most of the texture boundaries occur
together with an intensity edge. The same is true for motion discontinuities.
Color boundaries also correspond to brightness boundaries (isoluminant bor-
ders exist only in the psychophysics lab!). In addition intensity edges can be
better localized than motion, depth, texture and color discontinuities. The
case of texture is especially clear: the uncertainty in the location of texture
boundaries is no less than the size of the basic elements of texture, called
textons{26] and usually several times as much. In most cases stereo can-
not provide precise depth discontinuities because of occlusions. Color is in
a similar situation because of the coarse scale at which it is computed (the
low resolution is imposed by the low signal to noise ratio and the desired
insensitivity to small surface markings).

Psychophysics also suggests that intensity information has a privileged
role relative to other cues. Cavanagh(5] has shown that only intensity edges
can support subjective contours and shadow interpretation. Furthermore,
discontinuities portrayed through cues besides intensity edges, are more dif-
ficult to see at the level of recognition.

6.2 Open problems in the approach

The preliminary results obtained by integrating intensity edges with depth
and motion data are encouraging, as the figures show. There are, however,
many open questions that have to be answered before our theory can be
regarded as a serious first step towards understanding visual integration.
First, there is the question of the overall organization of the integration
stage, the nature of the interactions and the couplings between the different

23

cues. There are also more specific questions about our technique of visual
integration and discontinuity detection.

6.2.1 The Structure of Visual Integration

The scheme sketched in figure 8 is a preliminary suggestion for the struc-
ture of visual integration. It is close in spirit to the ideas about intrinsic
images proposed by Barrow and Tennenbaum(l]. They did not, however,
have the powerful theory of coupled MRF models to implement their ideas.

Information about the image intensity has a primary role - intensity edges
help the line processes associated with color, texture, motion and depth.
Depth itself has also a special role — in a sense, it is the main output of
the whole system. Motion, texture and color are coupled to depth. They
may not be directly coupled to each other. Notice that the main couplings
are through the line processes, according to the principles outlined in the
introduction. Notice also that local estimates of reliability may be used to
control locally the strength of the coupling: we have seen earlier that in the
MRF model the coupling between depth and its discontinuities is controlled
by the parameter a which is inversely proportional to o2.

The line processes may receive data from early algorithms - at this point it
is an open question how. In the present implementation the intensity edges
are totally driven by external data provided by the Canny edge detector
whereas depth and motion do not get external information about disconti-
nuities in depth or motion.

The intensity edges are also coupled with a higher level field that favors
configurations of the subjective contour type, providing completion of lines
and collinearity on a more global basis than the neighborhood of the line
process{22]. The depth line process is coupied with another high-level field
that provides the correct constraints on the interactions between contours of
overlapping objects. A T junction is a clue to occlusion by one of the two
surfaces bounded by it; an X intersection indicates that one of the surfaces
may be transparent. The high-level features couple these configurations of
the line process to the appropriate states of the depth process. If no values
are locally available, default values for in front and behind are given to the
depth process.

24

,‘I Intensity Motlon| [Texture Color
Ry Ry Ry By L
\\ \.\”’\\-\\ \.\
SRV R e Edges

Iy Iy 0

ity S
) ‘|3|0| ‘lo’":'c, W) \Qle'
:\’30 N :\:,. \ ;Jﬂ N
Bl Yo \'Ql AN
iy ey Gty
\\3,;' \\3’\ \\:,;,

b

Depth \

\/

Figure 8: The organization of the integration stage. Each of the processes is
coupled to its line process. Intensity data feed into the motion, color, texture
and depth line processes. The line processes are not hidden processes: they
may also receive data from specialized discontinuity detectors. The intensity
line process gets input data from Canny edges. It is coupled to a higher level
field which implements constraints of line continuation and collinearity on a
more global basis than the neighborhood system of the line process. The line
process associated with the depth process is also coupled to a higher level
field which implements the appropriate constraints underlying occlusions of
surfaces. The plausibility of interactions between motion, texture and color
is an open question.

25

6.2.2 Detailed Questions

Other open questions are: integration of additional visual cues, local vs. globa!
constraints on the line process. tolerance tn registration. multiresolution fields.
approrimative alyorithms and neural implementations and learning of param-
eters from eramples.

Integration of additional visual cues As figure & shows. we plan to inte-
grate other visual cues with stereo. motion and intensity data. In particular.
we will include texture and color. Because texture boundaries usually depend
on changes of material or sharp changes in surface orientation. they could
be used to support the line processes in the depth and motion modules. For
color the goal is to find boundaries that delineate regions of constant albedo
(at a coarse resolution. since small surface markings should not he “seen” at
this stage). Asin the case of depth and motion. intensity edges play a critical
role for these two additional visual modules. Hurlbert and Poggio {see 21')
have sketched a possible scheme for coupling albedo with intensity edges.

[t is important to notice that the combination of several visual cues not
only allows reinforcemer: of evidence for. say, a depth discontinuity. but also
achieves a classification of an intensity edge in terms of its underlying physical
cause: for instance, whether it is due to a shadow or a depth discontinuity.
Clearly. psychophysics can give useful indications of which interactions are
important in the human visual system:

Local versus global constraints on the line process The line process
provides a means for imposing important physical constraints on the disconti-
nuities such as: continuity, relative spatial isolation and possibly collinearity.
These constraints are enforced by using appropriate cliques and associated
energy values. However, in our experience with Markov Random Field mod-
els applied to real data, a problem has emerged with the use of the line
process. In many cases the property of collinearity that can be enforced in
this way remains too local: discontinuities tend to be too jagged and some-
times even broken when integration with intensity edges is not used. How
can one enforce the property of continuity or simply collinearity over larger
distances within the MRF framework? The basic idea that we have begun
to explore is to have a higher-level MRF that consists of “features”, such as

26

straight lines of different orientations, with its prior probability distribution,
coupled (bidirectionally) with the line process lattice (see figure 8).

Tolerance in registration When data from different cues are combined,
say from intensity and from stereo, they must be registered. Spatial coinci-
dence is the main constraint exploited here. In general, however, one cannot
expect that discontinuities in depth and intensity will always have ezactly
the same location. Because of errors in the early vision processes, effects of
filtering, photometric effects and so on, depth discontinuities may be offset
by one or more pixels from intensity edges. To deal with this registration
problem the cone ot influence might be useful, in which the intensity edges
facilitate (or don’t veto) the formation of depth discontinuities. The cone of
influence size should be on the order of the line process neighborhood. In this
way the line process constraints will ensure collinearity within the cone-of-
influence. Again, important information will come from psychophysics: we
expect to learn how a*~ament of, for instance, intensity edges with depth
discontinuities affects human vision. |

Learning parameters from examples A critical problem in using MRF's
is the problem of parameter estimation. The performance of the scheme
depends critically on the natural temperature of the field, the potentials
associated with the clique configurations, the coupling betwe=n the latiices,
and so on. Parameter estimation should provide estimates for these factors;
possibly by learning from a set of examples.

Does integration influence early vision modules? In our computa-
tional approach to integration we have tacitly assumed that information flows
from the early vision modules to the integration stage — the coupled MRF
system — but not backwards. The output of say, stereo, is modified by the
outputs of other modules at the level of the MRFs but the stereo process
itself — the matching, for instance — is not affected. The decision to neglect
feedback interactions, from the integration stage to the early processes, in the
present version of our theory is mainly due to reasons of simplicity. Without
modifying our scheme in an essential way, it is easy to incorporate backward
effects from the integration stage by assuming that the whole process from
early vision algorithms to the integration stage can be controlled by a ".igher-

27

order system taking into account higher-level goals and the available results.
If recognition is the goal, for instance, the current results of the recognition
operation on the integrated information can coantrol which early processes to
apply, where. and how (i.e. which parameters to use). In this case, one may
hope to develop a useful theory of integration without worrying at first about
the problem of feedback.

A different possibility is that interactions between the integration stage
and the early vision modules are an essential part of any integration theory
and cannot be neglected even in a first-order approximation. In an extreme
case one might not be able to separate the integration stage usefully from
the early vision modules and even the modules one from another.

In principle, this is possible. The algorithms for the early processes can
be regarded in several cases as MRF¢ themselves (regularization algorithms
are special cases of MRFs[2,23]). Thus our coupling schemes for integration
can be extended to couple the early processes. In practice, we expect that
parameter estimation may become a very serious problem once the early
vision processes are tightly coupled.

Hardware implementations As discussed elsewhere{19,21] the coupled
MRF models used here can be implemented efficiently in mixed digital and
analog hybrid networks. It is interesting that, the interaction underlying
coupling between fields is of the type of a multiplication, logical-and or veto
operation. These operations have some intriguing possible implementations
in terms of the properties of synapses.

While it is certainly possible to implement the same mixed deterministic
and stochastic algorithms described here in, say, VLSI technologies, it is
also interesting to expiore .pproximative deterministic algorithms that may
be simpler and more efficient. Marroquin{16] has provided an encouraging
initial anal; 3is along with estimates of convergence properties.

References

(1] H. Barrow and M. Tenenbaum. Recovering Intrinsic Scene Character-
istics from [mages. Academic Press, New York, 1778.

28

[2] M. Bertero, T. Poggio, and V. Torre. lll-Posed Problems in Early Vision.
AL Memo No. 924, Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, 1986.

[3] Andrew Blake and Andrew Zisserman. Visual Reconstruction. The
M.L.T. Press, Cambridge, MA, 1987.

[4] John F. Canny. Finding Lines and Edges in Images. Technical Re-
port TM-720, Artificial Intelligence Laboratory, Massachusetts Institute
of Technology, 1983.

[5] Patrick Cavanagh. Reconstructing the third dimension: interactions be-
tween color, texture, motion, binocular disparity, and shape. Computer
Vision, Graphics, and Image Processing, 37:171-195, 1987.

(6] Haluk Derin and Howard Elliott. Modeling and segmentation of noisy
and textured images using gibbs random fields. /[EEE Transactions on
Pattern Analysis and Machine Intelligence, PAMI-9(1):39-55, January
1987.

(7] Michael Drumbheller. Connection Machine stereo matching. In Proceed-
ings of the AAAI pages T48-753, August 1986.

(8] Michael Drumheller and Tomaso Poggio. On parallel stereo. In Proceed-
ings of the IEEE Conference on Robotics and Automation, San Fran-
cisco, CA, 1986.

(9] Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distri-
butions, and the bayesian restoration of images. /EEE Transactions on
Pattern Analysis and Machine Intelligence, PAMI-6(6):721-741, Novem-
ber 1984.

(10) W. Eric L. Grimson. From [mages to Surfaces. M.LT. Press, Cam-
bridge, MA, 1981.

(11] W. Danny Hillis. The Connection Machine. PhD thesis, Massachusetts
Institute of Technology, Cambridge, MA, 1985.

(12] B. K. P. Horn and B. G. Schunk. D~‘*ermining optical flow. Artificial
Intelligence, 17, 1981.

29

T N B E EEE EBEEERE B B B B BB M

(131 James J. Little, Guy E. Blelloch, and Todd Cass. Parallel algorithms
for computer vision on the Connection Machine. In Proceedings of the

International Conference on Computer Vision, London, England, June
1987.

[14] James J. Little, Heinrich Bulthoff, and Tomaso Poggio. Parallel optical
flow computation. In Proceedings of the Image Understanding Work-
shop, pages 417-431, Los Angeles, CA, February 1987.

(15] David Marr and Tomaso Poggio. A theory of human stereo vision. Proc.
R. Scoc. London B, 204:301-328, 1979.

(16] Jose L. Marroquin. Deterministic bayesian estimation of markovian ran-
dom fields with applications to computational vision. In Proceedings of

the International Conference on Computer Vision, London, England,
June 1987.

(17] Jose L. Marroquin. Probabilistic Solution of Inverse Problems. PhD
thesis, Massachusetts Institute of Technology, Cambridge, MA, 1985.

(18] Jose L. Marroquin. Surface Reconstruction Preserving Discontinuities.
A.L. Memo No. 792, Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, August 1984.

[19] Jose L. Marroquin, Sanjoy Mitter, and Tomaso Poggio. Probabilistic
solution of ill-posed problems in computational vision. J. Amer. Stat.
Assoc., 82:76-89, 1987.

(20] David W. Murray and Bernard F. Buxton. Scene segmentation from
visual motion using global optimization. IEEE Transactions on Pattern
Analysis and Machine Intelligence, PAMI-9(2):220-228, March 1987.

[21] Tomaso Poggio. Integrating Vision Modules with Co- MRF’s.
Working Paper No. 285, Artificial Intelligence L . .ory, Mas-
sachusetts Institute of Technology, 1985.

(22] Tomaso Poggio and Edward B. Gamble Jr. In preperation.

[23] Tomaso Poggio, Harry Voorhees, and Alan Yuille. Regularized Solution
to Edge Detection. A.I. Memo No. 833, Artificial Intelligence Labora-
tory, Massachusetts Institute of Technology, May 1985.

30

[24] Demetri Terzopoulos. Computing Visible Surface Representations. A.l
Memo No. 800, Artificial Intelligence Laboratory, Massachusetts Insti-
tute of Technology, March 1985.

{25] Demetri Terzopoulos. The role of constraints and discontinuities in
visible-surface reconstruction. In Proceedings of the IJCAI, pages 1073~
1077, August 1983.

[26] Harry Voorhees and T. Poggio. Detecting textons and texture bound-
aries in natural images. In Proceedings of the International Conference
on Computer Vision, London, England, June 1987.

31

Thinking Machines Technical Report 86.14

Introduction to Data Level Parallelism

With Programming Examples
for the Connection Machine®System

April 1986

© 1986 Thinking Machines Corporation

“Connection Machine” is a registered trademark of Thinking Machines Corporation.
“C+” and “*Lisp” are trademarks of Thinking Machines Corporation.

Contents

1 Data Level Parallelismn 1
1.1 Parallelism in the World Around Us 1
1.2 Parallelismin Computer Systems 1
1.3 Two Styles of Computer Parallelism 2
1.4 The Connection Machine Data Level Parallel Computer 2

141 Program Execution. 3
1.42 The Connection Machine Processors 3
1.4.3 Connection MachineI/O 4
1.5 Communications: The Key to Data Level Parallelism 4
1.6 Connection Machine Application Examples 5

2 Document Retrieval 7
2.1 Accessing Computer DataBases 7
2.2 Algorithms for Document Retrieval 8
2.3 Database Loading on the Connection Machine System 8
2.4 Document Lookup on the Connection Machine System 11
2.5 Retrieving the Highest Scoring Documents 12
2.6 Timing and Performance 13
2.7 Summary and Implications 14

3 Fluid Dynamics 15
3.1 The Method of Discrete Simulation 16
3.2 A Discrete Simulation of Fluid Flow 16
3.3 Implementation on the Connection Machine System 18
3.4 InteractiveInterface 21
3.5 Timing and Performance., 23
3.6 Summary and Implications, 23

Contour Maps from Stereo Images
Analyzing Aerial Images by Computer
Seeing in Stereo
Finding the Same Object in Both Images
Matching Edges
Measuring Alignment Quality
Drawing Contour Maps
Finding Edges on the Connection Machine System
Matching Edges on the Connection Machine System
Drawing Contours on the Connection Machine System
Timing and Performance
Summary and Implications

Cs Programming Language
C* Extensions
5.1.1 Parallel Control Flow
5.1.2 The Selection Statement
5.1.3 Computation of Parallel Expressions
5.1.4 Data Movement

sLisp Programming Language
Fundamentals of Lisp
6.1.1 Lisp Functions
6.1.2 Variables
6.1.3 Program Control Structure
*Lisp Extensions

Processors
Parallel Variables
Accessing Pvars Relative to a Grid

*Lisp Programs

Connection Machine System
Connection Machine Internal Structure
Connection Machine Instruction Flow
Computational and Global Instructions
Communications Instructions

CONTENTS

CONTENTS

7.5 TheRouting Process e....
7.6 Dynamic Reconfiguration

8 Looking to the Future

iii

d I B I E E =

List of Figures

21
22

3.1

3.2
3.3

3.4

41

4.2

4.3

4.4

4.5

Documents on the same subject have a high overlap of vocabulary..
Documents on different subjects have low overlap of vocabulary.

Unless particles are obstructed by an obstacle, or collide into other particles,
they contizue in the same direction.
Situations that cause particles to change directions.
Hezagonal cells with siz incoming bits for particle direction and siz outgoing
bits for particle divection e
The formation of a fluid flow phenomenon, called a “vortex street,” as fluid
flows from left to right past a flat plate.

An obligue view of a terrain model used in @ demonstration of the contour
mapping algorithm. e
A stereo pair of the terrain in Figure .1, obtained from directly above the
BETPAIN. L i e e e e e e e e e e e e e e e e
An ezample of edges. These edges were derived from the stereo pair shown in
Figure 4.2. They delineate the boundaries between areas of different intensity.
An illustration of the sliding process. Each of these images shows the contents
of an alignment-table-slot sn each pizel. The Nth image shows slot N in every
pizel’s alignment table. The dark areas are regions of good alignment, i.e.,
areas where the same alignment-table-slot is filled in many pizels.
A contour map of the terrain model shown in Figures 4.1 and 2, computed
on the Connection Machine system.

iv

28

- - ! - ’

N Il Il E E ..

Chapter 1

Data Level Parallelism

1.1 Parallelism in the World Around Us

Whenever many things happen at once, parallelism is at work. It is at work for one of
two reasons: either because someone is in a hurry or because it is the natural course of
events. If, for example, many people are working at once to compose a song, it is because
someone is in a hurry. Music is a naturally sequential process. Physical phenomena, on
the other hand, are almost always parallel. The wind in a wind tunnel does not blow
over one square centimeter of an automobile body at a time. It blows across the whole
frame at once, showing the engineers how the flow in one section interacts with the flow in
another. If we simulate the wind in parallel, the results come faster as a natural consequence.
The parallelism is being utilized, but it is not being artificially imposed. Other examples
of fundamentally parallel phenomena include vision processing, information retrieval, and
many types of mathematical operations.

1.2 Parallelism in Computer Sy ‘ems

The same two motivations, doing things in a hurry and doing things more naturally, also
motivate computer architects. Until recently, those architects who are focused on greater
speed have obtained it from faster circuitry. Making the electronics twice as fast, or the
memory twice as big, has traditionally been a cost-effective way to double the performance
of a single-processor computer system. But now these gains have become much harder to
achieve. Limits to circuit speed have been reached. So designers who are solely focused on
speed are now seeking to inject parallelism into their designs. If two computers of traditional
architecture can operate in parallel, the overall speed of the system can double.

There is, however, another starting point for the design process. Computer architects

2 CHAPTER 1. DATA LEVEL PARALLELISM

can go back to the problems themselves and understand the parallelism that has been there
all along. Having understood it, they can build a system that exploits it directly. The first
benefit of this approach is simplicity. A computer that fits the problems it solves is easier to
use and program than a computer that doesn’t. And it is also faster. Systems that couple
to the inherent structure of a problem mine a deeper vein of parallelism. For this reason,
they can dramatically outperform systems whose superficial performance specifications seem
superior. When parallelism is imposed on a problem, a speed-up of ten is considered good.
When inherent parallelism is exploited, speed-ups of 1000 are commonplace.

Some applications benefit much more than others. While certain problems do not have
a large amount of parallelism, there is a large and growing body of important problems that
do. For these applications the method of designing the computer around the inherent paral-
lelism of the problem is proving to be outstandingly valuable. This approach is called “data
level parallelism.” The remaining sections of this report describe data level parallelism and
its application to three very different computing problemns. The implementation examples
use the Connection Machine system, the first data level parallel computer available on the
commercial market. (See reference 8] for further discussion of the Connection Machine
system)

1.3 Two Styles of Computer Parallelism

All computer programs consist of a sequence of instructions (the control sequence) and a
sequence of data ¢lements. Large programs have tens of thousands of instructions operating
on tens of thousands, or ¢even millions of data elements. Parallelism exists in both places.
Many of the instructions in the control sequence are independent; they may in fact be exe-
cuted in parallel by multiple processors. This approach is called “control level parallelism.”
On the other hand, large numbers of the data elements are also independent; operations on
these data elements may be carried out in parallel by multiple processors. This approach,
as mentioned in the previous section, is called “data level parallelism.” Each approach has
its strengths and limitations. In particular, data ievel parallelism works best on problems
with large amounts of data. Small data structures generally do uot have enough inherent
parallelism at the data level. When the ratio of program to data is high, it is often more
efficient to use control level parallelism. But control level parallelism requires the user to
brezk up the program and then maintain control and synchronization of the pieces.

1.4 The Connection Machine Data Level Parallel Computer

The Connection Machine computer from Thinking Machines Corporation is the first system
to implement data level parallelism in a general purpose way. Since the computer .s designed

1.4. THE CONNECTION MACHINE DATA LEVEL PARALLEL COMPUTER 3

around the structure of real world problems, the best way to understand the Connection
Machine architecture is to follow its use in solving an actual problem. A VLSI simulation
example will be used for that purpose. In VLSI simulation, the computer is used to verify
a circuit design before it is released to be manufactured. The Connection Machine system
provides a very direct way to perform this simulation. Each transistor in the circuit is
simulated by an individual processor in the system. The chapters which follow explain
three more examples in much greater detail.

1.4.1 Program Execution

Data level parallelism uses a single control sequence, or program, and executes it one step at
a time, just as it is done on a traditional computer. The Zonnection Machine system utilizes
a standard architecture fiont end computer for this purpose. All programs are stored on
the front end machine. Its operating system supports program development, networking,
and low speed I/O. The front end computer has access to all the memory in the system,
albeit one data element at a time because it is a serial computer.

All Connection Machine program execution is controlled by the front end system. A
Connection Machine program has two kinds of instructions in it: those that operate on one
data element and those that operate on a8 whole data set at once. Any single-data-element
instructions are executed directly by the front end; that is what it is good at. The important
instructions, those that operate on the whole data set at once, are passed to the Connection
Machine hardware for execution.

In the VLSI simulation example, the important instructions are the ones which tell
each processor to step through its individual transistor simulation process. Each processor
executes the same sequence of instructions, but applies them to its own data, the data that
describes the voltage, current, conductance, and charge of its transistor at that time step
of the simulation.

1.4.2 The Connection Machine Processors

In order to operate on the whole data set at once, the Connection Machine system has
a distinct processor for each data element. The system implements a network of 65,536
individual computers, each with its own 4096 bits of memory. The data that describe
the problem are stored in the individual processors’ memories. During program execution,
whenever the front end encounters an instruction which applies to all the data at once,
it passes the instruction across an interface to the Connection Machine hardware. The
instruction is broadcast to all 65,536 processors, which execute it in parallel.

Applications problems need not have exactly 65,536 data items. If there are fewer,
the system temporarily switches off the processors that are not needed. If there are more
problem elements, the Connection Machine hardware operates in virtual processor mode.

AD-A212 489 ALLEL ALGORTTWMS FOR COMPOTER YTSTON:
nﬁssncugéensLxgsr OF TECH CAMBRIDGE ann;xcml.
UNCLASSIFIED DACA76-85-C-0010

T POGGIO JAN 89 ETL-O!

F/G 12/1

it O =l p

== & = 2z
| L T
= i
2 fjua e

4 CHAPTER 1. DATA LEVEL PARALLELISM

Each physical processor simulates multiple processors, each with a smaller memory. Virtual
processing is a standard, and transparent, feature of the system. A Connection Machine
system can easily support up to a million virtual processors. In general, a problem should
have between ten thousand and a million data elements to be appropriate for the Connection
Machine system.

1.4.3 Connection Machine 1/O

Since the front end system has access to all Connection Machine memory, it can load data
into that memory and read it back out again. For small amounts of data, this is a practical
approach, but for large amounts it is too slow. A separate 500-megabit-per-second I/O bus
is used instead. This bus is used for disk swapping, image transfer, and other operations
which exceed the capacity of the front end.

1.5 Communications: The Key to Data Level Parallelism

Large numbers of individual processors are necessary for data level parallelism, but by
themselves they are not enough. After all, there is more to a VLSI circuit than individual
transistors. A circuit is made up of transistors connected by wires. Similarly, there is
more to a Connection Machine system than just processors. A Connection Machine system
is made up of processors interconnected by a massive inter-connection system called the
router.

The router allows any processor to establish a link to any other processor. In the case of
the VLSI simulation example, the links between processors exactly match the wiring pattern
between the transistors. Each processor computes the state of an individual transistor
and communicates that state to the other processors (transistors) it is connected to. All
Connection Machine processors may send and receive messages simultaneously. The router
has an overall capacity of three billion bits per second.

It is part of the reality of the world we live in that many things happen at once, in
parallel. It is part of the beauty of the world we live in that these many things connect and
interact in a variety of patterns. Looking at the whole problem at once requires a computer
that combines the ability to operate in parallel with the ability to interconnect.

Since the structure of each problem is different, the interconnection pattern of the com-
puter must be flexible. All linkages between Connection Machine processors are established
in software. Therefore, the system can configure its processors in a rectangular grid for one
problem and then into a semantic network for the next. Rings, trees, and butterflies are
other commonly used topologies. The chapter on hardware describes router operation in
greater detail.

HE E EE T EEEE S EEEEEEEEREN

1.6. CONNECTION MACHINE APPLICATION EXAMPLES 5

1.6 Connection Machine Application Examples

Each of chapters 2, 3, and 4 describes a Connection Machine example in detail. First
the algorithm is described, and then the actual program that implements this algorithm
is presented and discussed. It is not necessary to study the program to appreciate the
simplicity of the overall approach. Many readers will want to skip over these details. The
third example, contour mapping, is quite sophisticated. Hence the program for this example
is more complex than the two that precede it.

The initial Connection Machine languages are C* and *Lisp. C#* is an extension of C
and is appropriate for a wide range of general purpose applications. *Lisp is an extension of
Lisp. Lisp, while less well known than C, is also an appropriate language for a wide variety
of applications. Its primary use, however, has been in the field of artificial intelligence.
Chapters 5 and 6 provide ar introduction to these languages.

CHAPTER 1. DATA LEVEL PARALLELISM

S i 0 B Y Im .

Chapter 2

Document Retrieval

There is too much to read. The written material for almost every discipline grows much
faster than any one person can read it. Computers have not provided much relief to date.
Now data level parallelism provides the computing power to implement significantly better
solutions to the document retrieval problem. These solutions are more natural, so they
require less user training. And they are much more accurate, so they give the user much
greater confidence in the results.

2.1 Accessing Computer Data Bases

There are a number of systems today that provide on-line access to text information, but
they perform poorly because they rely on a “keyword” mechanism for finding documents.
The premise of a keyword system is that the relevance of a whole document can be deter-
mined by the presence or absence of a few individual words. Users enter one or more “key-
words” or labels that they feel capture the sense of .» .:./ormation needed. All documents
which either contain these words or have been inde: "4 ..ader these words are retrieved.
Those that do not are ignored. Even with refinement:, such as “Find all occurrences of
‘New England Patriots’ within ten words of ‘Superbow!’,” a keyword search generally tends
to either find too many documents for the user to cope with, or too few for the user to find
useful. It is a guessing game, with the user trying to imagine the most fruitful search terms.

Not all relevant documents contain the one particular word that the user chose, because
writers use language differently. A search for documents containing the word “chips” may
find five relevant documents, but miss ten others that were indexed under “integrated
circuits” or “VLSIL.” Since the search yields only one third of the relevant documents, it
would be considered to have a recall of 33%. Worse yet, the five relevant documents might
be returned mixed into twenty other documents describing cookies or paint or other subjects

7

8 CHAPTER 2. DOCUMENT RETRIEVAL

where the word “chips” appears. Such a search would be considered to have a precision of
20%. Recent published testing has shown that recall results of as little as 20% are common
with keyword based systems [1].

In short, keyword-based systems are very good at finding one or two relevant documents
quickly. What they are poor at is producing a refined result with high recall and high
precision. The Connection Machine document retrieval system provides a very powerful
way for doing complete searches. It starts out using a keyword approach, but once the
first relevant document is found, the whole approach changes. The user proceeds by simply
pointing to one or more relevant documents and saying, in effect, “Find me all the documents
in the database that are on the same subjects as this one.” A document that has been
identified as relevant by the user is referred to here as a “good document.”

2.2 Algorithms for Document Retrieval

Data level parallelism makes massive document comparisons simple. The basic idea is
this: a database of documents is stored in the Connection Machine system, one or more
documents per processor. Once the first good document is found, it is used to form a search
pattern. The search pattern contains all the content words of the document. The host
machine broadcasts the words in the pattern to all the processors at once. Each processor
checks to see if its document has the word. If it does, it increases the score for its document.
When the entire pattern has been broadcast, the document that most closely matches the
pattern will have the highest score, and can be presented first to the user.

The algorithm is simple to program because it takes advantage of innate characteristics
of documents rather than programming tricks and second guessing. Every document is,
in effect, a thesaurus of its subject matter. A high percentage of the synonyms of each
topic appear because writers work to avoid repetition. In addition, variants of each word
(such as plural, singular, and possessive forms), and semantically related terms also appear
among the words in a particular article. Clearly not every synonym, variant, and related
term will occur in a single article, but many terms will. Each reinforces the connection
between the search pattern and the document. Spurious documents, on the other hand,
will not be reinforced. The word “chip” will appear in an article about cookies, but “VLSI”
and “integrated circuit” simply will not. In the overall scoring, truly useful documents are
reliably separated from random matches. (See figures 2.1 and 2.2.)

2.3 Database Loading on the Connection Machine System

A document database may be constructed from sources of text auch as wire services, elec-
tronic mail, and other electronic databases. For this description it is important to draw a

2.3. DATABASE LOADING ON THE CONNECTION MACHINE SYSTEM 9

MPG

automobile exhaust

economy

Figure 2.1: Documents on the same subject have a high overlap of vocabulary.

sugar

VLSI

chocolate

wafer

shelf life

integrated
circuit

retail

Figure 2.2: Documents on different subjects have low overlap of vocabulary.

10 CHAPTER 2. DOCUMENT RETRIEVAL

distinction between source documents and content kernels. A source document contains the
full actual text of a particular article, book, letter, or report, and is stored on the front-end’s
disk. A content kernel is a compressed form of the source document that encodes just the
important words and phrases. It omits the commonplace words. Content kernels are stored
in the memory of Connection Machine system.

The content kernel is produced automatically from the source document. First, the
source document is processed by a Thinking Machines document indexer program that
marks the most significant terms in the text. Next .hese terms are encoded into a bit-
vector data structure, using a method called “surrogate coding.” Surrogate coding, which
is sometimes referred to as a “hash coding” method, allows the content kernel to be stored
more compactly. It also speeds up the search process. In surrogate coding, each term in
the content kernel is mapped inio ten different bits in a 1024-bit vector. The ten selected
bits in the vector are set to one to indicate the presence of the word in the document. In a
content kernel of 30 terms, the process of surrogate coding ends up marking about a third
of the bits as ones.

The source document in its original form is available for retrieval and presentation to
the user when needed. The location of the original document on the system disk is stored
with the content kernel.

Each segment of the content kernel is made up of the following fields:

score is used by the document lookup program to accumulate the ranking of each
content kernel in the database according to how closely the content kernel matches
the user’s search pattern. Each time a match is found, *score* is updated.

document-id# contains a reference to the original source document that this content
kernel was derived from. When a content kernel is selected from the database lookup,
the user is shown the source document referred to by this index.

kernel= is a table of the surrogate-coded bit-vector encoding.

The necessary declarations for these fields are as follows. (In this chapter only, all of the
code is presented twice, first in the *Lisp language and then in the C* language, to make it
easy to compare the two languages. Because the characters * and ? may not appear in C*
identifiers, such *Lisp names as *score* and word-appears? are rendered in C* simply as
score and word_appears.)

ii: Declarations for the *Lisp version.

(defconstant table-size 1024)
(defconstant hash-size 10)

B E EEEEE®EENEBN

24. DOCUMENT LOOKUP ON THE CONNECTION MACHINE SYSTEM 11

(*defvar *scorex)
(*defvar *document-ids)
(*defvar *kernel#)

/* Declarations for the C* version. */

#define TABLE_SIZE 1024
#define HASH_SIZE 10

poly unsigned score, document_id;

poly bit kernel [TABLE_SIZE];

2.4 Document Lookup on the Connection Machine System

During the first stage of document lookup, the user lists a set of terms to be used to search
the database, and receives back an ordered list of documents that contain all or some of
those terms. The user then points to a document which is relevant, and from this document
an overall search pattern of content-bearing words is assembled. The search pattern is simply
a list of these words, with weights assigned to each word. The weight assigned to a word is
inversely proportional to its frequency in the database (for example, “platinum” appears in
the database less frequently than “gold,” and therefore has a higher weight associated with
it). This weighting mechanism ensures that uncommon words have more of an influence
than common words over which content kernels get selected during the document lookup
process.

Next, the search pattern is broadcast to all processors in the Connection Machine system.
The same mechanism that is used to code each word in the content kernel as a series of bits
is applied to the words in the search pattern. For each word in the search pattern a set of
ten bit indices is broadcast. All content kernels that have these same ten bits set will have
the weight of that word added into their *ecore* field. (It is possible that all ten bits for
a word might happen to be set on account of other words even though that word doesn’t
really appear in the source document. Such an accident will result in a “false hit” on that
word. However, for two reasons, this will not seriously affect the results of the lookup.
First, the probability of a false hit is small: (%)10’ or less than one in 50,000. Second, a
false hit will be only one of many terms contributing to the score, and so will have only a
small effect even when it does occur.)

The following code is used to broadcast one search pattern word to all the processors

12 CHAPTER 2. DOCUMENT RETRIEVAL

in the system, which check their content kernels and add the value of weight into their
gcore if it contains the word. The word is represented by a list of ten bit locations
(bit-locs).

i:: *Lisp code for testing the presence of a single word.

(*defun increment-score-if-word-appears (bit-locs word-weight)
(*let ((word-appears? t!!))
(dolist (bit bit-locs)
(*set word-appears?
(and!! word-appears?

(nott! (zerop!! (load-byte!! *kermel# (!! bit) (!! 1)))))))

(*if word-appears?
(*set *scorex (+!! *gcorex (!! word-weight))))))

/* C+ code for testing the presence of a single word. */

poly void increment_score_if_all_bits_set
(mono unsigned word_bit_position[HASH_SIZE], mono int weight) {
meno j;
poly bit word_appears = 1;
for (§ = 0; § < HASH_SIZE; j++)
word_appears &= kernel[word_bit_position[jl];
i? (acvd_zopears)
score += weight;

The main search program simply calls this routine once for each keyword in the keyword
list.

2.5 Retrieving the Highest Scoring Documents

The code that follows is used to retrieve the *document-id* for each of the highest scoring
content kernels in the database. The program returns a list of *document-id*s for the
content kernels with the highest scores. The program first retrieves the *document-id* for
the highest score, then the next highest score, etc., until a list of length document-count is
retrieved. The alreacy-retrieved? flag is set once a processor has had its *document-id«
retrieved so it will not be retrieved again.

26. TIMING AND PERFORMANCE 13

i+: *Lisp code for retrieving documents in order, highest score first.

(*defun retrieve-best-documents
(let ((top-documents-list nil))
(*let ((already-retrieved? nil))
(dotimes (i document-count)
(*when (not!! already-retrieved?)
(*when (=1! *score* (*max *scores*))
(*let ((next-highest-document (*min (self-addreas!!))))
(setq top-documents-list
(append top-documents-list
(1ist (pref *document-id* next-highest-document))))
(sett (pref already-retrieved? next-highest-document) t))))))
top-documents-1ist))

/* C* code for retrieving documents in order, highest score first. »/

poly void retrieve_best_documents
(mono document_count, mono unsigned *document_id_array) {
poly bit already_retrieved = O;
mono 1i:
for (1 = 0; i < document_count; 1++) {
if (lalready_retrieved) {
it (score == (><= score)) {
processor *next_highest_document = (<>= this);
document_id_array[i]l = next_highest_document->document_id;
next_highest_document->already_retrieved = 1;

H E B EEEEEEBs

2.6 Timing and Performance

A production level version of the algorithms described above has been implemented and
extensively tested on the Connection Machine system. Performance studies have been done
on a database of 15,000 newswire articles, which constitute 40 megabytes of text. An

14 CHAPTER 2. DOCUMENT RETRIEVAL

automatic indexing system, selects the content kernels for each document. The content
kernels are about one third of the original size of the text. Surrogate coding compresses the
data by another factor of about two. In the system currently in use, the kernels are encoded
into as many 1024-bit vectors as are needed at 30 terms per vector. For a long document
several vectors are used; additional code, not shown above, is needed to chain the vectors
together and combine the results.

Using this encoding, the Connection Machine system is able to retrieve the 2C nearest
documents to a 200-word search pattern from a data base of 160 MBytes in about 50
milliseconds. (160 MBytes is equivalent to an entire year of news from a typical newswire.)
In this time the Connection Machine system performs approximately 200 million operations
for an effective execution speed of 6,000 Mips.

2.7 Summary and Implications

The program is brief because the algorithm is simple. The Connection Machine system is
able to match the user’s needs directly. It is8 powerful enough to carry out the algorithm in
a straightforward way. The user wants to say to the database “All documents on the same
subject as this one, line up in order here.” That is exactly the service that the Connection
Machine system provides for the user. It broadcasts the contents of the selected document
to tens of thousands of processors at once. Each processor decides in parallel how similar
its documents are. Then the most similar ones are sorted and presented to the user.

Even larger databases can use the same technique with two enhancements. The first
enhancement is the use of a very high-speed paging disk, which allows larger numbers of
content kernels to be swapped into the system for searching. The second enhancement is
the use of cluster analysis. When the system has many documents on the same subject, it
need not store all their content kernels individually. It can store one for the whole cluster,
then retrieve the full set of related documents when needed. A single document may, of
course, participate in more than one cluster. As the total database size grows, the size of
the average cluster grows with it, making this a particularly appropriate technique for large
scale databases. The addition of paging and clustering extends the algorithm described
above to the 10-gigabyte range and beyond.

Chapter 3

Fluid Dynamics

Fluid flow simulation is a key problem in many technological applications. From the flow
of air over an airplane wing to mixing in a combustion chamber, the problem is to predict
the performance of a design without building and testing a physical model.

Until recently, fluid flow models were based almost exclusively on partial differential
equations, typically the Navier-Stokes equations or approximations to them. These equa-
tions are not generally solvable by normal analytical methods. Numerical approximation
techniques, such as finite difference methods and finite element methods, have been devel-
oped to solve these partial differential equations. All of these methods involve large numbers
of floating point operations which require great amounts of fast memory. In addition, ob-
structions to the low must usually be mathematically simple shapes.

Recent physics research has suggested that it is possible to make intrinsically discrete
models of fluids. The fluids are made up of idealized molecules that move according to very
simple rules, much simpler than the Navier-Stokes equations. The models are examples of
cellular automata and are partic:larly well-suited to simulation on the Connection Machine.
Cellular automata are systems composed of many cells, each cell having a small number
of possible states. The states of all cells are simultaneously updated at each “tick” of a
clock according to a simple set of rules that are applied to each cell. This approach involves
only simple logical operations and does not require floating point arithmetic. It allows for
all obstructions regardless of their shape. In addition, mathematical methods can be used
to show that the results of such simulations agree with the results that would be obtained
from the Navier-Stokes equations.

15

16 CHAPTER 3. FLUID DYNAMICS

3.1 The Method of Discrete Simulation

Discrete simulation is used to model fluid flow on the Connection Machine system. The
technique involves six key elements: particles, cells, time steps, states, obstacles, and in-
teraction rules. Particles correspond to molecules of a fluid. A particle has a speed and a
direction which determine how it moves. A time step is a “tick” of a clock that synchronizes
the movement of particles. During each time step, particles move one cell in the direction
that they are heading. A cell is a specific place in the overall region that is being observed.
The region is completely filled with cells. Particles can move into and out of each cell during
each tiine step. A state is a value assigned to each cell that indicates the number of particles
within the cell, and in which directions they are heading. An obstacle is a set of special
cells that obstruct the natural movement of particles. The tnteraction rules determine the
movement of each particle when it shares a cell with one or more other particles. This
movement i8 carried out by updating the state of the cells to reflect the new positions of
the particles within the region.

A discrete simulation typically uses fixed cells. The cells never move or change during
the simulation. Particles are completely in one cell during a time step, and move completely
into the next cell (determined by the interaction rules) during the next time step. During
each time step, every cell gathers data about particles heading in its direction from each of
its neighboring cells. Based on the interaction rules, each cell determines the direction of
its newly acquired particles and updates its own state.

A simulation designer can choose the cell topology and the interaction rules. The cell
topology determines how many sides a cell has, and therefore, the directions by which
particles may er.ter and exit. The simulation designer also determines the number of cells
in the region being observed, and the average number of particles in each cell. Cellular
automata theory provides the background for the simulation designer’s decisions. It suggests
that a simple cell topology, a huge number of cells and particles, and simple, local interaction
rules are the most likely to be successful.

3.2 A Discrete Simulation of Fluid Flow

Thinking M *hines is currently simulating fluid flow using a two-dimensional region that is
divided in% 3,000,000 hexagonal cells. Each cell is assigned to its own Connection Machine
processo: . :g the virtual processor mechanism). The hexagonal mesh is a simple topology
that givs the ' .~domness that is required on a microscopic level to get correct results on
the macrosce; « wevel.

One f the fundamental reasons for computer simulation of fluid flow is to observe the
behavior of a fluid as it lows past an obstacle. In the discrete model, obstacles are groups
of cells that particles can not travel through. When a particle approaches an obstacle cell,

3.2. A DISCRETE SIMULATION OF FLUID FLOW 17

it bounces off during the next time step. In order to observe the behavior of a fluid, tens
of millions of microscopic particle interactions are simulated. Each individual particle’s
path through the cells and off of the obstacle cells appears almost random, just as in real
fluids. However, when all of the particles’ paths are considered, the overall behavior of the
model is consistent with the way that real fluids behave. (See references [4,7,14] for further
discussion of the use of cellular automata to model fluid flow.)

Individual particles can enter or exit through any of the six sides of each cell. A cell
may contcin a maximum of one particle heading in each of the six possible directions during
a given time step (and so the total number of particles per cell per time step is anywhere
from 0 to 6). A particle that has not collided with another particle during a time step
will continue moving in the same direction during the next time step. (See figure 3.1.)
When particles collide, a simple set of rules determines their new directions, conserving
both momentum and the number of particles.

S\
N/
/ /\\\
N/
()

ume | time 2 time - 3

Figure 3.1: Unless particles are obstructed by an obstacle, or collide into other particles,
they continue in the same direction.

At each time step, every cell updates its state by checking all of its adjoining cells, or
neighbera, for particles that are heading in its direction. All cells then update their own
states based on the information that they have gathered. In the model currently imple-
mented, there are five situations that cause a particle to change directions: 2-way symmetric
collisions, 3-way symmetric collisions, 3-way asymmetric collisions, 4-way symmetric colli-
sions, and collisions with an obstacle cell. (See figure 3.2.)

Although the algorithm is implemented by modeling the individual movements and

collisions of tens of millions of particles at each time step, the behavior of the fluid is observed
by averaging the behavior of all of the particies in the entire region and by analyzing the

18 CHAPTER 3. FLUID DYNAMICS

|

i
ta) thi (c)

S
N

(d) fe)

Figure 3.2: Situations that cause particles to change directions.

(a) Two-way symmetric: two particles enter a cell from opposite sides. The particles ezit
through a different pair of opposite walls.

(b) Three-way symmetric: three particles enter a cell from non-adjacent sides. Each particle
ezits by the side through which it entered.

(c) Three-way asymmetric: three particles enter a cell, two of them from opposite sides.
One particle passes through unobstructed; the other two particles behave as in a two-way
symmetric.

(d) Four-way symmetric: four particles enter a cell, each particle’s side is adjacent to only
one other particle’s side. Particles behave as in two two-way symmetric collisions (mazimum
of one particle eziting per side).

(e) Collisions with an obstacle cell: a particle always leaves an obstacle cell by the side
through which it entered.

results over many time steps. In a typical simulation, macroscopic results are gathered by
averaging particles together in groups of 20,000. Although each individual particle has only
one speed and six possible directions, the average of 20,000 particles provides the full range
of possible velocities.

3.3 Implementation on the Connection Machine System
There are two available ways for the Connection Machine system to implement the con-

nections among the hexagonal cells. It can use the full router, setting up six connections
for each site, one for each adjacent hexagon. Or it can use its grid, which connects four

3.3. IMPLEMENTATION ON THE CONNECTION MACHINE SYSTEM 19

adjacent processors directly. The grid network was chosen for this implementation. It is
very fast for small data transfers to nearby processors.

Of course, the grid cannot implement hexagonal connections directly. It connects to
four adjacent processors, not six. Therefore, two of the six connections require two-step
communication (i.e., up one and over one for the diagonal). The simulation program im-
plements this two-step process. Each site can quickly learn the status of its six neighbors
and can determine which ones contain particles that are moving in its direction.

Each cell has only 13 bits associated with it: six bits for incoming state (numbered
0-5), six bits for outgoing state (numbered 0-5), and one bit to indicate whether or not it
is an obstacle. Each of the six incoming state and six outgoing state bits is dedicated to a
particular direction. If a particle is entering or exiting through that direction, then the bit
is set to 1, otherwise it is set to 0. (See figure 3.3.)

BITS 0 1 2
INCOMING |0] 10
OUTGOING |1 {00

— Ofw
Q| =&
O O|lwn

Figure 3.3: Hezagonal cells with siz incoming bits for particle direction and siz outgoing bits
Jor particle direction

/* A cell state is represented by a six-bit unsigned integer,
which can also be regarded as an array of six individual bits. */

typedef? union STATE {unsigned:6 Val; unsigned:1 Bit[6];} state;

/* Each processor in the domain "grid" will contain a cell state
(the outgoing state), another state (the incoming state) used
for temporary purposes in the calculation, and a bit saying
whether or not it is an obstacle cell. */

poly state outgoing state, incoming state;
poly unsigned:1 obstacle_cell;

20 CHAPTER 3. FLUID DYNAMICS

/* The following declares the actual grid of processors. */
processor fluid_grid[ARRAY_X_SIZE] [ARRAY_Y_SIZE];
/* Grid is the C pointer type that corresponds to the above array type. */

typedef processor (*grid)[ARRAY_Y_SIZE];

At each time step, instructions are broadcast that tell each cell how to gather data
about particles heading in 1is direction. When the cells poll each of their six neighbors for
information, they formulate their own 6-bit incoming state. For example, a cell would ask
its East neighbor for its outgoing state bit number 3, and would place the answer in its own
incoming state bit number 0. It would then ask its NorthEast neighbor for its outgoing
state bit number 4 and would place the answer in its own incoming bit number 1. All cells,
in parallel, check the state of all six of their neighboring cells. This extreme data level
parallelism allows for a large amount of data to be collected in a small amount of time.

/* This code is executed within each processor. QOutgoing state

bits from six neighbora are gathered and placed within the local
incoming _state array. Note the use of a C cast expression
((grid)this) to create a self-pointer that has a two-dimensional
array type suitable for double indexing. (This code actually is
oversimplified in that it does not handle the boundary conditions
for cells on the edge of the grid. Handling these conditions is
a bit tedious but conceptually straightforward.) =/

poly void get_neighbors() {
incoming_state.Bit[0]
incoming_state.Bit[1]
incoming_state.Bit[2]
incoming_state.Bit[3]
incoming_state.Bit[4]
incoming_state.Bit[5]

((grid)this) [11[0].outgoing_state.Bit[3];
((grid)this)[0l[1).outgoing_state.Bit[4];
((grid)this) [-1][1].outgoing_state .Bit[5];
((grid)this) [-1]1[0].outgoing_state.Bit[0];
((grid)this) [0] [-1]).outgoing_state.Bit[1];
((grid)this)[11[-1].outgoing_state.Bit[2];

Once each cell has determined which particles are entering (by collecting its incoming
state), it updates its outgoing state to reflect the particle interactions. First, all cells that
have their obstacle-bit turned on are instructed to set their outgoing state to be the same as
their incoming state (since particles that hit an obstacle bounce back in the same direction).

3.4. INTERACTIVE INTERFACE 21

Next, patterns are broadcast that correspond to each of the possible 6-bit incoming states,
followed by the corresponding 6-bit outgoing state. Each cell compares its incoming state
to the pattern being broadcast. When there is 2 match, the cell updates its outgoing state
accordingly. For example, a cell with an incoming state of 011011 would then have an
outgoing state of 110110 (refer to figure 3.2d).

/* The rule table is indexed by a six-bit incoming-state value
and contains the corresponding outgoing-state values. */

state rule_table[64];

/* Calculate the new outgoing state for all cells, based on the
incoming_state and the obstacle_cell bit. */

poly void update_state {
if (obstacle_cell)
outgoing_state.Val = incoming_state.Val;
else outgoing _state.Val = rule_table[incoming_state.Val].Val;

It is important to note that this trivial, non-computational, table look-up is the driving
force of the whole simulation. The Connection Machine system has replaced all of the math-
ematical complexity of the Navier-Stokes equations with this small set of bit-comparison
operations. The simulation is successful because the system can perform this operation on
huge numbers of particles in very short amounts of time. It is an example of the Connection
Machine system being easier to program because it supports a much simpler algorithm.

3.4 Interactive Interface

A typical “run” of a fluid flow simulation begins by allowing the user to make several
choices. The user typically specifies the average number of particles per cell (density) and
the average speed and direction of the particles (velocity). Technically this means that the
entire region starts out with particles randomly distributed among the cells (based on the
density) and moving in a certain overall direction (based on the average velocity). The user
also selects or draws one or more obstacles and places them somewhere in the region being
observed. All cells that are part of an obstacle have their obstacle bit set. As the simulation
runs, new particles are randomly injected from the edges of the region in order to maintain
the selected density and velocity. Once the model is running, each cell’s state is continually
updated, and average results for regions of cells are displayed.

22 CHAPTER 3. FLUID DYNAMICS

/* This is the main computation loop. At each time step, each
cell fetches state from neighbors and updates its own state;
then the results are displayed. */

poly void fluid_flow() {
tor (;;) {
get_neighbors();
update_state();
display_state();

}
/% Execution begins here. */

void start_fluid_flow() {
/% Initialization. =/
initialize_rule_table();
initialize_cell();
/* Activate all processors in fluid_grid
and then call the function fluid_flow. */
[([10021uid_grid].{ fluid_flow();: }

Figure 3.4: The formation of ¢ fluid flow phenomenon, called a “vortez street,” as fluid
flows from left to right past a flat plate.

3.5. TIMING AND PERFORMANCE 23

3.5 Timing and Performance

A production level version of the algorithm described in this chapter has been implemented
and extensively tested on the Connection Machine system. The simulation operates on a
4000 x 4000 grid of cells, typically containing a total of 32 million particles. The Con-
nection Machine system is able to perform one billion cell updates per second. Figure 3.4
shows several displays from a simulation of 100,000 time steps. Each time step includes
approximately 70 logical operations per cell; the simulation therefore required a total of
100 trillion (10%) logical operations. The complete simulation took less than 30 minutes.
Current results are very competitive with state-of-the-art direct numerical simulations of
the full Navier-Stokes equations.

3.6 Summary and Implications

In addition to providing very accurate simulation of fluid behavior, the Connection Machine
method for simulating fluid flow allows scientists to continually interact with the model.
Any of the user’s original choices may be modified during a run of the simulation, without
long delays for new results. Since particles are continually moving through the cells, a new
density or average velocity may be established by adjusting the particles being randomly
injected from the edges. When a new obstacle is added during a run, the obstacle bits in
the appropriate cells are set, and those cells begin to reflect particles. Within less than a
minute (a few thousand time steps), results based on the new selections become apparent
in the displayed flow.

The algorithm for simulating fluid flow on the Connection Machine system is simple. It
overcomes problems formerly associated with computer simulations of fluid flow by using
a discrete simulation that takes advantage of the Connection Machine system’s inherent
data level parallelism. During each time step, every particle can move in the direction it is
heading, every cell can evaluate its new particles based on collision rules, and every cell can
update its state to reflect the direction of the particles it currently contains. The algorithm
involves a small number of instructions executed over a large amount of data. Since the
Connection Machine system is able to assign a processor to each data element, and to allow
all processors to communicate simultaneously, it has provided the computational power
required to provide the ideal solution to this applications need.

CHAPTER 3. FLUID DYNAMICS

24

Chapter 4

Contour Maps from Stereo Images

Human beings have extremely sophisticated and well-developed visual capabilities, which
scientists are just now beginning to understand. Since humans are very good at dealing
with visual data, graphics and image processing provide an excellent opportunity for cre-
ative partnership between people and computers. An example of this partnership is the
widespread use of graphical output for computer applications, such as scientific simula-
tions. The computer does what it does best, computing the results and displaying them in
a picture or a movie. Researchers do what they do best, using their sophisticated visual
system to make qualitative judgements based on the visual information.

In many important computer applications, however, this partnership breaks down.
When the flow of visual data is too large, the human visual system makes mistakes. Of-
ten this is simply because humans get tired and lose their concentration when faced with
very large and monotonous streams of visual data, not because they are trying to extract
information too subtle for current computer science to handle.

4.1 Analyzing Aerial Images by Computer

The analysis of detailed aerial images is an area where increased computer processing is
highly desirable. Topographers would like to have the computer partially “digest” the visual
data first, presenting only the essential properties of the images to the human user. In some
cases, they would like to have the computer go even further, drawing abstract conclusions
from raw visual data. Scientific progress in image processing and artificial intelligence
has recently made this kind of information processing possible. However, conventional
computers cannot keep up with the enormous flow of data that these applications present.
Consequently, humans are still doing most of the work in these areas. The partnership has
hroken down because people are doing what the computer should be doing for them.

25

26 CHAPTER 4. CONTOUR MAPS FROM STEREO IMAGES

Data level parallelism is helping to redress this balance. It is ideally suited to the analysis
of multiple images and the detection of subtle differences between them. In particular, it
is allowing stereo vision algorithms to be applied to terrain analysis in very high volume
applications. Stereo vision is the process by which humans are able to take in two slightly
different images (from the two eyes) and use the small differences arising from the two
different perspectives to determine the distances to the objects in the field of view. Using
the same principle, the Connection Machine system is able to analyze two aerial images
to determine the terrain elevation and to draw a contour map. Contrary to the apparent
ease with which humans can perform this process, it is a subtle and difficult computational
problem which no computer has yet solved perfectly. That iz why humans are always
involved to “coach™ the process. The Connection Machine system. with its natural ability
to handle large numbers of images and compare them in great detail, can help to drastically
reduce the amount of work people must do in this area.

This chapter describes the underlying algorithms for stereo vision on a data level parallel
computer, and shows some of the implementation on the Connection Machine system. Many
detailed elements of an actual production system, such as straightening out misaligned
images and displaying intermediate results, have been omitted in order to focus on the
underlying algorithms. See references [2,3,5,11,12,13] for more information on machine
vision and the stereo matching problem.

4.2 Seeing in Stereo

Images are very large, inherently parallel data structures. Therefore the processing of images
is an application that is ideally suited for data level parallelism. An image is stored as an
array of picture elements, or pizels. An image with 256 pixels in the vertical dimension and
256 in the horizontal dimension has a total of 65,536 data elements. More detailed images,
with 1024 by 1024 pixels, have more than a million data elements. For black and white
images, the value stored in each of the pixels is the intensity of light at that point, ranging
from pure white through various shades of gray to pure black. (Pixels in color images
contain information describing the hue and saturation as well as the brightness.) The
contour mapping problem is one of extracting terrain elevation information from images
that, upon first inspection, contain only information about terrain brightness at each pixel.

The term sterec means “dealing with three dimensions.” Stereo viston is “the ability to
see in three dimensions.” Humans and many animals have the remarkable ability to take
in two images, obtained from slightly different perspectives—one from each eye—and fuse
them to perceive a three-dimensional world. The difference in perspective causes objects to
appear in slightly different places in the two images. The amount of positional difference is
related to the distance of the object from the viewer.

4.3. FINDING THE SAME OBJECT IN BOTH IMAGES 27

Because stereo vision occurs automatically in humans, we tend to be unconscious of the
process. A simple demonstration serves as a reminder. Hold a pencil in front of a piece of
paper and fix your gaze on the paper. Start to alternately close one eye and then the other,
then slowly move the pencil toward your face. Keep the paper stationary and your gaze
fixed on the paper while you move the pencil. The paper always seems to shift back and
forth by the same small amount, but the closer the pencil moves to you, the more it jumps
in position between the two views.

The two images used in a stereo vision system are called a “stereo pair.” Figures 4.1
and 4.2 give an example. Figure 4.1 shows a model of some terrain, as seen from an oblique
angle. Figure 4.2 shows a stereo pair obtained from directly above the terrain. Figure 4.2
can produce a vivid sensation of depth when observed with an appropriate stereo viewing
apparatus.

Figure 4.1: An oblique view of a terrain model used in a demonstration of the contour
mapping algorithm.

4.3 Finding the Same Object in Both Images

Individual pixels within an image are not reliable indicators of objects. Two pixels, one
in each image, can have the same brightneas value without being part of the same object.
Features larger than individual pixels must be found. The “edges” between areas of different
intensities make up an effective set of such features. An edge is a line, usually a crooked line,
along the boundary between two areas of the image that have different intensity. Instead
of trying to match pixels based on their intensity, the algorithms match them based on
the shape of nearby edges. The shape of edges is usually much more strongly related to

28 CHAPTER 4. CONTOUR MAPS FROM STEREO IMAGES

Figure 4.2: A stereo pair of the terrain in Figure 4.1, obtained from directly above the
terrain.

distinct objects than the simple brightness value.

Figure 4.3 shows an example of edges. These edges were derived from the stereo pair in
Figure 4.2.

The process of finding edges falls into the category of image computations called “local
neighborhood operations.” Individual pixels are classified based on characteristics of a
group, or neighborhood, of nearby pixels. Edges are found by having each pixel determine
whether the brightness of nearby pixels on one side of it is very different from the brightness
of nearby pixels on the other side. This will be the case only for pixels that pass this test:
they must lie between two smage regions that are simslar within themaelves but different from
each other. These edge pizels are detected by examining the local neighborhood of every
pixel sn parallel, and storing the ones that pass the test in an array. Typically, only 10 to
20 percent of the pixels in an image get classified as edge pixels.

N V (‘Y{’ \
6058
(NS

o

W
B
'::";‘r‘ -./' 1

\AVEI{"—" "-

N &l

$1
X

Figure 4.3: An ezample of edges. These edges were derived from the stereo pasr shown in
Figure {.2. They delineate the boundaries between areas of different intensity.

- - -‘

4.4. MATCHING EDGES 29

4.4 Matching Edges

Even though edges are much more closely tied to objects than simple brightness values, there
is still a great deal of work involved in deciding whether an edge in one image corresponds
to a particular edge in the other image. Real images suffer from distortions due to several
sources. Distortions include random fluctuations or “noise” introduced in the electronic
imaging process, relative misalignment between the cameras, and irregular illumination.
In addition to these effects, which tend to blur the distinction between edges that match
and those that do not, there is a “bad luck” factor: an object or surface marking in one
image very often just happens to look like several markings in the other image. For these
reasons, the final choice of matches, and therefore the correct positional difference, is always
somewhat ambiguous.

If the detection of edges were a perfect process, deciding which positional difference is
best for each pixel would be simple. A local neighborhood of edges would align exactly at
one relative shift and very little at all the others. Because of the imperfections described
above, however, such a high level of precision is impossible. Every neighborhood of edges
in one image matches to some extent with many neighborhoods in the other image. The
competition is usually very close.

4.5 Measuring Alignment Quality

To resolve the competition, the Connection Machine algorithms hold one of the images
stationary and “slide” the other one over it horizontally one pixel at a time. Each time the
moving image is slid one more pixel’s distance, all the stationary pixels compare themselves
to the pixels to which they now correspond in the slid image. They record the presence
or absence of an edge alignment in a table in their own memory. Typically, the maximum
shift between two images is 30 pixels, so a table of 30 alignment matches is created in the
memory of each stationary pixel’s processor.

This sliding procedure, using the edges from Figure 4.3, is illustrated in Figure 4.4.
Each of the 16 images shows an alignment table eatry for each pixel. Black pixels indicate
positive alignment table entries, i.e., “match-ups” between the stationary and the sliding
images. For example, the Tth image shows alignment-table-slot 7 in each pixel. Thus every
black pixel in image 7 corresponds to a match-up between stationary and sliding edges when
the relative shift was 7 pixels.

The resulting alignment tables generally show several spurious matches, but also one
or two solid ones where the local neighborhcod cf edges lined up very tightly. When this
happens at a pixel, it is a signal that the correct shift (the correct positional difference) for
that pixel has been found.

30 CHAPTER 4. CONTOUR MAPS FROM STEREO IMAGES

Figure 4.4: An illustration of the sliding process. Each of these images shows the con-
tents of an alignment-table-slot in each pizel. The Nth image shows slot N in every pizel’s
alignment table. The dark areas are regions of good alignment, i.c., areas where the same
alignment-table-slot is filled in many pizels.

4.6. DRAWING CONTOUR MAPS 31

As in the edge detection process, the alignment quality of every shift position in the
alignment table is measured by a local neighborhood operation. In this case, the operation
is the following: for each shift position, each pixel processor counts and records the number
of matching edge pixels in a small neighborhood around itself. This count or “score” will
be high for pixels whose nearby edges are tightly aligned with the edges in the other image
at the same position but displaced by the shift.

The best shift for a given pixel is determined by comparing the alignment scores at
every position in its alignment table. The shift that has the highest score 18 chosen as the
correct shift for the pizel. This process takes place in parallel for all pixels; in this way a
shift is determined for each pixel.

Areas of tight alignment are clearly visible in Figure 4.4. For example, the small shifts
(1 through 4) are tightly aligned over low terrain (refer to Figure 4.1), and the large shifts
(13 through 16) are tightly aligned over high terrain. Match-ups in these areas will get high
alignment scores because they lie amidst many other match-ups.

4.6 Drawing Contour Maps

The processing described so far yields the shift (or elevation) for every pixel that is part of
an edge. These pixels form a “web” of heights that approximates the shape of the terrain,
but is not yet smooth and continuous. It is full of holes (where non-edge pixels were) which
must be filled in by interpolation.

Interpolation is accomplished by another local neighborhood operation. Each pixel that
is not on the web takes on a new elevation which is the average elevation of the pixels in
a small neighborhood around it. The neighborhood includes the four pixels above, below,
to the left and to the right of the pixel. The pixels that make up the web maintain their
original elevations; only the pixels in the holes change their values. This process is repeated
or “iterated” a few hundred times.

Pixels that lie in the middle of holes in the web have zero elevation. Therefore, when
they become the average of their neighbors, which also have zero elevation, their elevation
does not change. However, pixels that lie near the edges of holes in the web have neighbors
whose elevation is nonzero. Therefore, when they become the average of their neighbors,
they jump to a nonzero elevation. On the next iteration, these new nonzero pixels influence
their neighbors, in turn creating new nonzero elevations. Gradually, after a few hundred it-
erations, the pixels on the web—which remain unchanged throughout the process—“spread”
their elevations across the holes in the web, filling it in to create a smooth, continuous sur-
face from which a contour map may be drawn. An example of a contour map is shown in
Figure 4.5.

32 CHAPTER 4. CONTOUR MAPS FROM STEREO IMAGES

Figure 4.5: A contour map of the terrain model shown in Figures {.1 and £, computed on
the Connection Machine system.

4.7 Finding Edges on the Connection Machine System

A pixel is classified as an edge pixel if it lies between two image regions that are similar
within themselves but different from each other. This is the program that performs the
edge classification operation.

(*defun find-edges-between-left-and-right!! (brightness-pvar threshold)
(*let* ((average-brightness-on-the-left
(/11 (+1)! (pret-grid-relative!! brightness-pvar (i1 -1) (1} -1))
(pref-grid-relative!! brightness-pvar (!! -1) (11 0))
(pref-grid-relative!| brightness-pvar (1! -1) (1! 1)))
(11 3.0)))
(average-brightness-on-the-right
(/11 (+1) (pret-grid-relative!! brightness-pvar ({1 1) (1t -1))
(pref-grid-relative!! brightness-pvar-(11 1) (11 0))
(pret-grid-relative!l! brightness-pvar (1! 1) (1! 1)))
(11 3.0)))
(average-brightness-overall
(/11 (+11 average-brightness-on-the-left
average-brightness-on-the-right)

-

4.8. MATCHING EDGES ON THE CONNECTION MACHINE SYSTEM 33

(11 2.0))))
(i1t (>!! (absolute-value!! (-!! average-brightness-on-the-left
average-brightness-on-the-right))
(*!1 (1) threshold) average-brightness--overall))
(1t 1)
(11 .0))))

The preceding program sequence calculates the average brightness in a small region to
the left (i.e., with relative x-coordinate —1, and relative y-coordinates —1, 0, and 1) and
the average brightness in a small region on the right side (with relative x-coordinate 1) of
each pixel. If, at any particular pixel, the difference between these averages is greater than
the specified threshold, then the pixel is marked with a one, meaning that it is an edge
pixel. Otherwise it is marked with a 0. The threshold is multiplied by the overall average
brightness, a process called “normalization.” With normalization, the threshold adapts to
the image, becoming small in regions where the image is generally dark, and large where
the image is generally bright.

Since this program compares regions on the left and right sides of a pixel, it works only
for edges that are more or less vertical. It is easy to write a program that finds horizontal
edges by having it compare small regions on the top and bottom of a pixel, in the same way
that this program compares regions on the left and right. The same could be done edges
in both diagonal directions. The four programs may then be combined to find all edges in
the following way:

(*defun find-all-edges!! (brightness-pvar threshold)
(if1! (ort! (=1 (11 1) (find-edges-between-left-and-right!!
brightness-pvar threshold))
(=t (1} 1) (2ind-edges-between-above-and-below! !
brightness-pvar threshold))
(=1 (11 1) (find-edges-between-upper-left-and-lower-right!!
brightness-pvar threshold))
(=! (11 1) (find-edges-between-lower-left-and-upper-right!!
brightness-pvar threshold)))
(11 1
(11 0)))

4.8 Matching Edges on the Connection Machine System

The following program sequence implements the sliding procedure described above. One of
the edge images is held atationary and the other edge image is moved across it horizontally,

34 CHAPTER 4. CONTOUR MAPS FROM STEREO IMAGES

one pixel at a time. At each relative shift (1, 2, ..., 30), each processor records whether
an edge match has been found in the sliding image. This information is stored in a pvar
that represents one of the alignment tables discussed above. All of the alignment tables are
stored in the Connection Machine memory at the same time.

(defvar *array-of-pvars-holding-matches-at-each-shift* (make-array 30))
;+: This is just a regular Lisp array, but each element of this
;:. array will be a pvar. Notice that we’ll try to find positional
i;; differences of up to 30 pixels. (Note: each one of the pvars
;i: in this array will hold an "alignment-table-slot" for every pixel,
i::; as discussed in the text).

(*defun fillup-pvars-wherever-edges-align (left-edges right-edges)
;: This program records the edge-pixel match-ups at every shift;
;; that is, this program creates "match-up images," as shown in
;: Figure 4.4.
(dotimes (i 30)
(agset (ift! (=!! left-edges
(pret-grid-relative!! right-edges (!! 1) (1! 0))

) ; “This PREF-GRID-RELATIVE!! accomplishes
(11 1) ; the "sliding" process.
(11 0))
array-of-pvars-holding-matches-at-each-shift#

i))

The next step in the process is to decide at each pixel position which shift produced
the best match-up. Most locations will contain a somewhat random pattern of match-up
pixels. However, at some locations, the local neighborhood of match-ups will be very dense
and regular, indicating that the shift responsible for that match-up image is probably the
correct shift for that neighborhood.

The following *Lisp program measures the density or alignment quality of every neigh-
borhood. It does so by counting the number of 1’s (match-ups) in a square around each
pixel. The counting process is accomplished in parallel, for all pixels at once, on the Con-
nection Machine system.

i1+ The square for each pixel is to be centered on that pixel.

;. Because a DOTIMES loop always produces values starting at zero,
ii: it is necessary to subtract one-half the width of the square
;7: from the loop variable in order to get relative indexes that

4.8. MATCHING EDGES ON THE CONNECTION MACHINE SYSTEM 35

... are centered on zero.

(*defun add-up-all-pixels-in-a-square (pvar width-of-square)
(let ((one-half-the-square-width (/ width-of-square 2)))
(*let ((total (1! 0)))
(dotimes (relative-x width-of-square)
(dotimes (relative-y width-of-square)
(*set total
(+!) total
(pref-grid-relativet!
pvar
(- relative-x one-half-the-square-width)
(- relative-y one-half-the-square-width))))))
total)))

At this point, it is a simple matter to record the alignment quality or score for every
pixel.

(defvar *array-of-pvars-holding-scores-at-each-shift* (make-array 30))
;3 Another Lisp array holding *Lisp pvars.

The next step is to fill all the elements of the Lisp array with *Lisp pvars. The Nth
element of the Lisp array holds a pvar containing the scores, or alignment qualities, of all
the matches that occurred when the edge images were shifted by N pixels relative to each
other. (Note that this program records scores only at locations where match-ups occurred.
Other locations have no score, which reflects our original intention of matching edges, not
the holes between them.)

(*defun fillup-pvars-with-match-scores (width-of-square)
:+ WIDTH-OF-SQUARE will typically be 21.
(dotimes (i 30)
(*let '((sum-of-all-nearby-pixels
(add-up-all-pixels-in-a-square
(aref *array-of-pvars-holding-matches-at-each-shift+ i)
width-of-square)))
(#*1f (=11 (aref *array-of-pvars-holding-matches-at-each-shift* i)
(11 1)) ;;: Record a score wherever there was a match-up.
(*set sum-of-all-nearby-pixels
sarray-of-pvars-holding-scores-at-each-shift*

1))

36 CHAPTER 4. CONTOUR MAPS FROM STEREO IMAGES

Now that the score for every match-up has been recorded, there is only one more step
required to establish which of the match-ups is correct. The following *Lisp program loops
through all the shifts, keeping track of the best score at each pixel. The shift that produced
the best score at each pixel is recorded as the “winning shift.”

;i: This function computes the web of known shifta. Recall that
;:: the shift at each pixel corresponds directly to the elevation.

(*defun find-the-shifts-of-the-highest-scoring-matches ()
(*let ((best-scores (!! 0))
(winning-shifts (1} 0)))
;1 The following DOTIMES loop makes sure that each
;1 pixel in the BEST-SCORES pvar contains the maximum
;+ score found at any shift.
(dotimes (i 30)
(+i2 (>11 (aref *array-of-pvars-holding-scores-at-each-shift* i)
best-scores)
(*set best-scores
(aref *array-of-pvars-holding-scores-at-each-shift* i))))
;3 The following DOTIMES loop records a "winning"
;: shift at every pixel whose score is the best.
(dotimes (i 30)
(+it (=11 (aref *array-of-pvars-holding-scores-at-each-shift* i)
best-scores)
(*set winning-shifts (11 (1+ 1)))))
winning-shifts))

4.9 Drawing Contours on the Connection Machine System

A contour map cannot be constructed without a smooth, continuous surface on which to
draw the lines. All of the processing so far has produces a web of known elevations (returned
by the last *Lisp function above). Interpolation across the holes in the web produces a
continuous surface.

4.9. DRAWING CONTOURS ON THE CONNECTION MACHINE SYSTEM 37

(*defun fill-in-web-holes (web-of-known-elevations times-to- repeat)
;» Each time through the loop, every pixel not on the web (i.e.
;: every pixel that is not zero to begin with) takes on the
;: average elevation of its four neighbors. Therefore, the web
;i pixels gradually "spread" their elevations acroas the holes,
:: while they themselves remain unchanged.
(dotimes (i times-to-repeat)
(*let ((not-fixed (zerop!! web-of-known-elevations)))
(*if not-fixed
(*set web-of-known-elevations
(/t (+11 (pret-grid-relative!!
web-of-known-elevations
(11 1) (1 o)) ;Neighbor to the right
(pret-grid-relative!!
web-of-known-elevations
(11 0 (11 1)) ;Neighbor above
(pref-grid-relativel !
web-of-known-elevations
(rr -1) 1y 0)) ;Neighbor to the left
(pref-grid-relativel!
web-of-known-elevations

(10 (11 -1)) :Neighbor below
(1IN
web-of-known-elevations) ;;; this is now a more or less smooth surface.

The following code takes the smoothed-out web and constructs a contour map in the
form of a plane of black-and-white pixels suitable for display on a graphics device.

(*defun draw-contour-map (number-of-contour-lines
pvar-of-smooth-continuous-elevations)

;i The idea is to divide the whole range of elevations into

;7 a number of intervals, then to draw a contour line at every

;i interval.

(let* ((max-elevation (*max pvar-of-smooth-continuous-elevations))
(min-elevation (*min pvar-of-smooth-continuous-elevations))
(range-of-elevations (- max-elevation min-elevation))
(contour-line-interval (/ range-of-elevations

number-of-contour-lines)))

38 CHAPTER 4. CONTOUR MAPS FROM STEREO IMAGES

;» Now the variable CONTOUR-LINE-INTERVAL tells us how many

;: elevations, or shifts, to skip between contour lines.

(if!! (zerop!!
(mod!! (-!! pvar-of-smooth-continuous-elevations
(!! min-elevation))
(1! contour-line-interval)))
(r 1 :; This IF!! draws all the elevation contours
(11 0)))) ;; at once, returning a bit map suitable for
;: for immediate display.

4.10 Timing and Performance

A production level version of the contour mapping algorithm described in this chapter has
been implemented and extensively tested on the Connection Machine system. Parameters
such as the size of the images and the range of positional differences (“shifts”) are variable,
depending on the application. A typical program run processes images containing 512 x 512
(262,144) pixels, while allowing for positional differences from O to 30 pixels. In such a mode,
the Connection Machine system performs approximately two billion {2 x 10°) operations
during the most time-consuming phase of the algorithm, the so-called “inner loop,” in
which the match-ups are detected and their alignment quality is measured. This inner loop
is executed in less than two seconds.

4.11 Summary and Implications

Contour mapping using stereo vision is an example of an image processing application that
is sophisticated and computationally expensive. The Connection Machine system, because
it readily accommodates itself to the inherently parallel structure of image data, made it
easy to conceptualize and to program the contour mapping algorithm. The simplicity and
brevity of the programs shown above is evidence of this natural fit.

The raw speed of the Connection Machine system is as valuable as its architecture. The
system can extract elevation information from large amounts of visual data at very high
rates. This speed allows scientists and engineers who are developing new techniques in
computer vision to try their ideas “on the fly.” A short turnaround time for experimenting
with new ideas is essential for the rapid development of the field of computer vision. The
effects of various program modifications are realized almost instantaneously. The system’s
computational power is a valuable aid in the design and implementation of sophisticated
algorithms.

Chapter 5
The C* Programming Language

C* (pronounced see star) is a simple extension to the C programming language [6,10] that
exploits the power of the Connection Machine architecture. C# is (almost) a strict extension
of C; any valid C program, if it avoids the use of a small number of C* reserved words, is
also a valid C* program. A few new features of the language serve to indicate where data is
stored and which operations are executed in parallel in the Connection Machine network.

5.1 C* Extensions

In order to indicate whether a variable is located on the host or in the Connection Machine
memory, two storage class identifiers mono and poly have been included in C*.

mono int x; /* x resides in the host memory */
poly int y; /* y resides in the Connection Machine memory */

The modifier poly declares variables present in all processors.

The majority of parallel code is standard C code. Parallel functions are simply distin-
guished by the identifier poly. It is a mark of the general-purpose nature of the Connection
Machine architecture that the full C language is available for programming the processors
of the Connection Machine system. Likewise, it is a mark of the simplicity of the architec-
ture that the C language suffices for this task. In fact, no new language features need to
be introduced in order to perform parallel control flow, interprocessor communication, and
memory allocation. The real power of C* comes from the natural parallelization of familiar
constructs of C.

39

40 CHAPTER 5. THE C* PROGRAMMING LANGUAGE

5.1.1 Parallel Control Flow

Inside of a parallel function, the normal C control-flow statements, such as if and while,
work as expected. This is perhaps unexpected to someone experienced with other parallel
languages. For example, an if statement may have a conditional expression whose value is
different in different processors:

poly salary;

if (salary <= 0)
salary = fixup_salary();

It would clearly be an error for all processors to make the call to fixup_salary. The
way C#* handles such a statement is to reduce the active set of processors, by temporarily
inactivating all those whose salary variables are positive. The body of the if statement is
run, and then the original active set is restored. Such conditional statements can be nested
to any degree.

The while statement can also operate in parallel. At each evaluation of the loop’s
conditional expression, more processors can drop out of the active set; they stay inactive
until the loop is finished. Finally, when all processors are finished with the loop, the
statement is done, and the original active set is restored. For example:

poly resumes_to_read;

while (resumes_to_read > 0) {
/* Read ten resumes at a time. =/
resumes_to_read -= 10;

In this case, all processors with resumes_to_read between 1 and 10 execute the loop body
exactly once.
All other standard C control constructs are handled in similar ways in C#*; even goto is

accommodated. The program behaves as if the standard C code were running separately
in each processor, with processors that are doing the same thing doing it at the same time.

5.1. C+* EXTENSIONS 41

5.1.2 The Selection Statement

In order to execute code in a selected set of processors, an additional statement called the
selection statement is included in C*. Selection statements may be used within any C*
function. The selection statement has the form:

[selector] .statement

The selector indicates a set of processors. These are activated, and the statement is
executed within those processors. For example, given the following declaration,

processor managers[100];
the following statement
[[100] managers] .{ salary *= 1.06; }
or, more simply,
[[Imanagers].{ salary *= 1.06; }
selects all 100 of the managers, and gives them a six percent raise. The code:
[[60]managers] .{ salary *= 1.11; }
gives the firat 50 an eleven percent raise, while this:
[managers[0] ,managers(2]].{ salary -= 1000; }
singles out the first and third managers for a pay cut. (More complicated forms of selection
are also available.)
5.1.3 Computation of Parallel Expressions

C* extends the meaning of C expressions to parallel computations by means of two simple
rules. The first rule says that if a single value (typically of storage class mono) is combined
with a parallel value (of class poly), the single value is first replicated to produce a poly
value. (In hardware terms, the single value is broadcast to all relevant processors.) For
example, in the expression (salary > 20000), the single value 20000 is replicated to match
the parallel variable salary. This rule is an addition to the rules of “usual conversions” in
plain C.

The second rule says that an operation on a parallel value (or values) must be processed
as if only a single operation were executed at a time, in some serial order. In the expression
(salary > 20000) it is as if we took first one salary value and compared it to 20000,
then another, and so on, doing the comparisons one at a time.

42 CHAPTER 5. THE C* PROGRAMMING LANGUAGE

Fortunately, we can analyze the > operation and determine that doing all the compar-
isons at once will produce the same result, because doing so will not affect the outcome.
This is hardly surprising, and it is exactly the effect we want anyway, so why do we have
the “as if serial” rule at all? It is because some operators do have side effects: assignment
operators. Consider the expression

total_payroll += salary;

Now total_payroll is a single value (what in C is called an lvalue, because it occurs on the
left side of an assignment). By the first rule it is replicated. We then have many assignments
to perform, one for each value in the parallel value salary:

total_payroll += salary_1i;
total_payroll += salary_2;
total_payroll += galary_3;

The second rule guarantees that the program behaves as if a!l of these assignments were
performed in some serial order. Which order does not matter; the result is the same. The
point is that if these assignments were executed in parallel some updates might be lost;
but C* guarantees that all the salary values will be correctly added into total_payroll.
(Doing this efficiently is handled by the C* implementor.)

A C assignment operator may be used as a unary operator in C* to reduce a parallel
value to a single result that may be further operated upon. For example,

(+= galary)
adds up the salaries for all persons for which processors are active, and
(+= salary)/(+= ((poly) 1)))
computes the average of all salaries because the expression
((poly) 1)
makes a 1 for every active processor and
(+= ((poly) 1)))

adds up all the 1's, thereby counting all the active processors.

In C*, “<>" is the “minimum” operator and “><” is the “maximum” operator. The
expression “a >< b” means the same as “(a > b) ? a : b”. The assignment operators
<>= and ><= are also defined: “a <>= b” assigns b to a if b is less than a. The expression
(><= galary) finds the largest salary, and (<>= salary) finds the smallest salary.

5.2. SUMMARY 43

5.1.4 Data Movement

C* has no language extensions to handle data movement or interprocessor communication
per se. Instead, the normal C operations are used; the Connection Machine architecture
allows random access to the desired datum, wherever it is in the system.

Within the code of a poly function, the keyword this is a C* reserved word whose value
is a pointer to the currently executing processor. This value is sometimes called the self-
pointer. If many processors are executing, each will have its own self-pointer. References
to the processor’s variables implicitly refer to the self-pointer: saying salary is the same
as saying this->salary. Explicit references to this are useful for accessing the memory
of neighboring processors through indexing.

The key point is that any processor may contain a pointer to data in the memory of any
other processor, and access through that pointer is supported by the Connection Machine
router. All interprocessor communication can therefore be expressed in C* merely by the
usual explicit and implicit pointer indirection mechanisms. For example, to increment a
neighbor’s salary field, and then decrement one’s own based on the result, the following
code might be used:

this(1] .salary ~= 1000;
salary -= this[1].salary * .10;

Similar expressions can also be used to broadcast data throughout the system, to transfer
data between the host and Connection Machine processing network, or to collect data from
many sources into one location.

5.2 Summary

The C* language is a version of the standard C language suitable for programming the Con-
nection Machine system. Because of the simplicity and power of the Connection Machine
architecture, C#* itself is a simple yet powerful extension of C. The Connection Machine
memory is treated as a large section of host-accessible memory with active objects stored
in it. Because standard C is already excellent at manipulating structures, pointers, and the
like, relatively few new language features are needed to deal with the Connection Machine
architecture. All the familiar C language constructs acquire the power of parallelism easily
and naturally.

44

CHAPTER 5. THE C* PROGRAMMING LANGUAGE

A E EEEEEEENs

Chapter 6
The *Lisp Programming Language

*Lisp (pronounced star lisp), is an extension of Common Lisp (9], a standard dialect of Lisp
that is found on a variety of computer systems. Lisp has many features that are common
to most programming languages, but its unusual structure and syntax make the programs
a bit difficult to read for someone who has mainly had experience with block structured
languages such as FORTRAN or C.

This chapter covers both Lisp and *Lisp in sufficient depth to make it possible to under-
stand the program examples in this book. See references [9,15,16] for a deeper understanding
of the Lisp language and its structure.

6.1 Fundamentals of Lisp

What most people remember about Lisp is that it uses lots of parentheses. And it is true—
Lisp does. But it is not necessary to understand the full implications of the parentheses
to understand the sample programs. Roughly, in a Lisp expression the first thing that
comes after the open parenthesis is the function name, and after that are the arguments.
So (+ 7 A) would call the function +, which adds 7 and the value of the variable A, and
returns the result.

Lisp function calls can be nested as they can in other languages. For example:
(» 6 (+123))

would first add together 1, 2, and 3, and then multiply the result by 5, giving 30.

Most Lisp programs are indented to help reveal their structure and to show how many
levels deep parentheses have been nested. Expert Lisp programmers keep their code properly
indented, and rely on the indentation as much as the parentheses when reading code.

45

46 CHAPTER 6. THE +LISP PROGRAMMING LANGUAGE

6.1.1 Lisp Functions

Functions are the program building blocks of Lisp. Unlike many other programming lan-
guages, Lisp does not have a main program followed by a series of functions. In Lisp
everything is a function, and programs are executed by invoking those functions from an
interactive Lisp interpreter.

The Lisp function-defining operation is called DEFUN. The first argument to DEFUN is
the name of the function that is being defined, the second a list of its arguments; these are
followed by the operations to be performed. For example:

(detun add-three (x) (+ x 3))

defines a function named add-three that takes one argument named x, and the operation
that is performed by the function is (+ x 3).

6.1.2 Variables

It is not necessary in Lisp to predefine variables, but it is often done for clarity. The
mechanism is straightforward:

{detvar a 28)

defines a variable named a with an initial value of 25. Variables defined with defvar are
global variables that can be accessed by any function at any time.

Temporary variables are defined in Lisp with the let operation, which takes a list of
variable-value pairs, and is followed by a sequence of operations to be performed. For
example,

(let ((temporary 26)
(x 49))
(print (+ temporary x))
(print (* temporary x)))

allocates two temporary variables temporary and x, assigns them the values 25 and 49
respectively, prints their sum and product, and then deallocates them when the let is
exited.

Variables have their value set with the setq function which takes as its arguments a
variable name and a value. So

(setq b 34.5)

sets the variable b to 34.5.

6.2. *LISP EXTENSIONS 47

6.1.3 Program Control Structure

The if construct is a simple method for conditionally controlling the flow of a program; it
is used in several places in the example programs. It takes a test clause, an expression to
evaluate if the result of evaluating the test clause is true, and, optionally, an expression to
evaluate if the result is false. The following simple example shows how if is used.

(i2 (= a 10)
(print "a is 10")
(print "a is not 10%))

Several of the examples use dotimes, a facility for executing a series of expressions a
specified number of times. As an example,

(dotimes (j 10)
(print j))

prints the integers from 0 to 9.

6.2 *Lisp Extensions

A *Lisp program looks much like an ordinary Lisp program. The biggest distinction is
that *Lisp operations manipulate data stored in the Connection Machine hardware, while
Lisp operates exclusively on the host processor. There are no instructions stored in the
Connection Machine processors; instructions are generated from the *Lisp program and
broadcast to the Connection Machine system.

The names of most *Lisp functions either begin with an “*” or end in “11” (meant
to look like two parallel lines, and pronounced bang bang) which means that they perform
operations on paralle] variables. This is only a naming convention and does nothing but
distinguish functions that work with the Connection Machine system and parallel variables
from functions that don’t. User programs may also follow the convention, but it is not a
requirement.

This section describes enough *Lisp to make the example programs understandable.
As part of that, it is first necessary to describe a few of the fundamental features of the
Connection Machine system.

6.2.1 Processors

A processor is the entity that operates on data in parallel. Each processor has a unique
address that allows it to be directly accessed. The address is made up of one or more num-
bers depending how many dimensions the Connection Machine hardware is simulating. A

48 CHAPTER 6. THE *LISP PROGRAMMING LANGUAGE

one dimensional machine would take one number as an address, a two dimensional machine
two numbers, etc. *Lisp has instructions that can directly access data in the Connection
Machine processors via these addresses.

6.2.2 Parallel Variables

The parallel variable mechanism is one of the key programming differences between *Lisp
and sequential programming languages. A thorough understanding of what parallel vari-
ables are and how they work is crucial to understanding the example *Lisp programs in
this document.

On a serial machine a variable may have only one value at a time. On the Connec-
tion Machine system a parallel *Lisp variable has as many values as there are processors.
Descriptors for parallel variables, or pvars, reside on the host computer, and the values of
those parallel variables are in the Connection Machine memory.

The *Lisp expression for defining a pvar is similar to the Lisp mechanism for allocating
a variable. The expression

(*defvar b (1! B))

defines a pvar named b which has a value of 5 on every processor in the machine. The
function *defvar is the parallel version of Lisp’s defvar. The expression

(11 B)

is the part of the defvar that actually does the allocation of a field with a value of 5 in
every Connection Machine processor.
Values are retrieved from processors with the pretf function. For example,

(pret b 7)

would return the value of pvar b in processor 7. Setting a value in a processor is accomplished
with the Lisp setf function.

(setf (pref b 3) 10)

would set the value of pvar b to 10 in processor 3. The first argument to setf describes
how to access the field that is going to be altered and the second argument is the new value
of the field.

The following series of *Lisp expressions show in some detail how to allocate and use
pvars.

First define some pvars:

(*defvar a)

6.2. *LISP EXTENSIONS 49

(*defvar b (!! 6) "This is a documentation string.")
(*defvar ¢ (!} -2.87))

(*defvar d t!!)

(*defvar e (1+!! (self-address!!)))

These statements created five pvars. The last four have been initialized with specific
values: b is a Lisp symbol that has as a value a pvar whose contents is the integer 5 in
each processor, ¢ contains the floating point number —2.67 in each processor, d contains
the boolean value true in each processor, and e contains the address of the next higher
processor. The function self-address is a function that returns a pvar which contains the
address of the selected processor.

Now read some of the values using pretf.

(pret c 0)
returns the lisp value ~2.67 since that is what is contained in pvar c in processor 0.
(pref d 3665)

returns the lisp value t since that is what is contained in pvar d in processor 0.
Now do some arithmetic on these pvars:

(+set a (+!! b ¢))

will set the contents of pvar a to be the sum of the contents of pvar b and pvar c. Notice that
¢ contains floating-point values. The integers contained in b are converted to floating-point
numbers and the result in a will be floating point as well. Expressions can be nested:

(*set a (-1! b (*1! a (11 2))))

This expression sets a to the difference of b and twice a. This simple expression could cause
thousands of such operations to go on simultaneously! The expression (!} 2) returns a
pvar that is 2 in all processors.

This point is important. The expression

(+11 a 2)

is an incorrect *Lisp expression. The variable a is a pvar, whose values are stored on
the Connection Machine system, while the integer 2 is a Lisp object stored on the front
end system. It is necessary to convert the 2 to a parallel value before doing any parallel
~omputation.

50 CHAPTER 6. THE *LISP PROGRAMMING LANGUAGE

6.2.3 Accessing Fvars Relative to a Grid

Two of the example programs, fluid flow and stereo matching, make heavy use of the
Connection Machine system’s grid mechanism, which facilitates communications between
processors for problems with two-dimensional data structures. For example say image was
a pvar containing a two-dimensional image. The following expression would shift the entire
image over by one pixel in the x direction and place the result in shifted-image:

(*set shifted-image (pref-grid-relative!! image (!! 1) (1! 0)))
in this example the (!! 1) specifies that there is a shift of 1 in the x-dimension, and the
(1! 0) specifies that there is no shift in the y-dimension.

6.2.4 Selection

In *Lisp it is possible to do an operation in a selected subset of all processors. The *Lisp
function *when is used to do that selection. For example:

(*when (=!! a (1! B))
(*set a (+!1 (11 2))))

adds two to a in all processors in which a has a value of 5.

6.2.5 =*Lisp Programs

*Lisp programs are defined in much the same way that Lisp functions are defined. The
main difference is that *defun is used instead of defun to define functions that either take
a parallel variable as an argument or return a parallel variable as a result.

6.3 Summary

*Lisp is a simple extension to Common Lisp that integrates the Connection Machine system
into an ordinary serial programming environment. For someone familiar with Lisp, the
essentials of *Lisp can be learned and put to productive use within a few hours.

Il
S

Chapter 7

The Connection Machine System

The Connection Machine system from Thinking Machines Corporation is the first computer
to implement data level parallelism in a general purpose way. It combines a very large num-
ber of processors with the communications capability necessary to match data topologies
exactly. This chapter describes the hardware implementation of the Connection Machine
system.

7.1 Connection Machine Internal Structure

As described in Chapter 1, the Connection Machine system operates by receiving a stream
of instructions from its front end computer. A microcontroller receives the instructions,
expands each of them into a series of machine instructions, then broadcasts the machine
instructions, one at a time, to all processors at once. The instructions coming in from the
front end are referred to as “macro-instructions.” The instructions broadcast to the individ-
ual processors are called “nano-instructions.” Macro-instructions are similar to assembly
language instructions on a conventional machine. They are the instruction codes produced
by the Connection Machine language processors. In the sections that follow, names of
macro-instructions appear in italics.

The Connection Machine system includes 65,536 physical processors, but may be con-
figured for a much larger number of logical processors by means of the cold-boot command.
Cold-boot takes two arguments that allow a two-dimensional array of virtual processors per
physical processor. Cold-boot(4,4), for example, sets up the machine in the million-processor
mode (or, more precisely, the 1,048,576 processor mode) because each of the 65,536 proces-
sors will simulate 16 (4 x 4) virtual processors. The same number of virtual processors could
be established by the command cold-boot (16, 1). Since virtual processors are so commonly
used, they are referred to simply as “processors”. Where it is necessary to refer to one of

51

52 CHAPTER 7. THE CONNECTION MACHINFE SYSTEM

the 65,536 hardware processors, the term “physical processor” is used.

Each physiczc] processor has 4096 bite of memory, tota'ling 22 megabvtes for the machine
as a whole. In the million-processor mode, each processor has 256 bits of memory. Memory
is divided into a data area and a stack area, with the layout being the same in each processor.
A single, system-wide register, the stack limit, defines the boundary between stack space
and data space. The stack pointer is also a system-wide register. The stacks in all processors
act in unison.

Memory is bit-addressable; all data fields are of arbitrary length. For numeric computing
there are three standard formats: unsigned-integer, signed-integer, and floating-point. Each
is of arbitrary length. In particular, floating-point numbers can be of any length. Picture
and word data are of arbitrary format and length.

A complete Connection Machine memory address has three parts. The first part indi-
cates a physical processor. The second part indicates one of the virtual processors simulated
by that physical processor. (This part is empty if there is only one virtual processor per
physical processor.) The third part is an address within the memory of that virtual proces-
sor.

Data may be exchanged between the Connection Machine memory and the front end in
any of three ways: slicewise, processorwise, and arraywise. Read-slice reads a single bit of
information from the memory of each of a series of consecutive processors, assembles them
into a signed integer, and passes the integer to the front end. Write-slice moves data from
the front end to the Connection Machine memory. Slice operations are typically done 16 or
32 processors at a time. Read-processor and write-processor move a single field between the
front end and a single processor. Read-array and write-array move arrays of fields between
the front end and a set of contiguous processors.

7.2 Connection Machine Instruction Flow

All instructions flow into the Connection Machine hardware from the front end. These
macro-instructions are sent to a microcontroller, which expands them into a series of nano-
instructions. Some expand into just a few nano-instructions. Others expand into hundreds
or thousands. It is also poesible to feed nano-level instructions to the microcontroller and
control the hardware directly. It is not, however, efficient to do so, because the front-end
cannot supply these instructions rapidly enough to keep the system busy. (Direct control
of the hardware from the front end is provided primarily so that the front end can support
debugging and diagnostic aids.)

Nano-instructions are broadcast to all processors in parallel. Processors, however, have
the option of “sitting out” a series of instructions. A one-bit flag within each processor, the
contezt flag, determines whether that individual processor will respond to the instruction

7.3. COMPUTATIONAL AND GLOBAL INSTRUCTIONS 53

or not. Most of the instructions discussed in this chapter are “conditional” in the sense
that thev take effect only in the processors that are active, that is, whose contezt flag is 1.

The Connection Machine system is implemented with four physical microcontrollers,
one for each section of 16,384 processors. If the system has a single front end, that front
end is connected to all four microcontrollers and therefore drives all 65,536 processors. A
system may be configured with up to four front ends. A crossbar switch called the Nexus
makes the connections between front ends and microcontrollers. It is possible, therefore,
to have four users operating simultaneously. Each works at a separate front end, and each
has a separate instruction stream executing in a section of the system’s processors. The
examples in this chapter, however, assume that the system is operatir.; with a single front
end.

7.3 Computational and Global Instructions

Computational instructions operate or =igned integers, unsigned integers, and floating-point
values. They include unary operators such as not, negate, absolute value, and square root.
All standard binary operators such as add, subtract, multiply, divide, compare, and shift are
included. These instructions operate in all processors simultaneously; each processor uses
the data that is stored in that processor’s memory.

The random instruction places an independently chosen pseudo-random number in each
processor. Two processors may or may not be assigned the same random value.

Global instructions produce a single result from data items stored in the memories of
all selected processors. Global-logior, for example, takes the inclusive OR of a field in each
pracessor’s memory. Global-count examines a single-bit field in all processors and returns
the number of “1” bits. Global-add sums multi-bit fields. Global-maz and glodal-min return
the largest (smallest) value found in a specified field across all selected processors. Global-
add operates on unsigned integers, signed integers, or floating point values, as do global-maz
and global-min. The enumerate instruction places a different consecutive integer into each
of a selected set of processors.

7.4 Communications Instructions

The simplest form of communication between Connection Machine processors is between
nearest neighbors. Each processor is wired to its neighbors to the North, East, West,
and South by a communications network called the NEWS grid. Four instructions, get-
from-north, get-from-east, get-from-west, and get-from-south control the transfer of data.
Information is passed one bit at a time.

General intercommunication and dynamic reconfiguration is performed by a much more

54 CHAPTER 7. THE CONNECTION MACHINE SYSTEM

powerful communications system, the Connection Machine router. It ailows full messages
to be sent from any processor to any other; the sending processor simply needs to have the
address of the de:lin..ion processor. Messages may be cf any length. Typical messages
contain 32 bits of information; adding the address information and headers results in a
transmitted package of 50 to 60 bits (depending on the number of virtual processors being
used).

Each of the 65,536 physical processors is connected to 16 other physical processors in
a special organization (a 16-dimensional hypercube) that provides large numbers of direct
paths to distant parts of the system. Every processor is connected to 16 other processors,
namely those whose binary address is different in just one of the 16 bits. The following
example shows the interconnections of processors 630 and 2070,9. The binary addresses are
shown in parentheses.

2 (0000 0000 0000 0010)

4 (0000 0000 0000 0100)
6 (0000 0000 0000 0110)

7 (0000 0000 0000 0111)

14 (0000 0000 0000 1110)
22 (0000 0000 0001 0110)
38 (0000 0000 0010 0110)
70 (0000 0000 0100 0110)
134 (0000 0000 1000 0110)
262 (0000 0001 0000 0110)
518 (0000 0010 0000 0110)
1030 (0000 0100 0000 0110)
2064 (0000 1000 0000 0110)
4102 (0001 0000 0000 0110)
8198 (0010 0000 0000 0110)
16300 (0100 0000 0000 0110)
32774 (1000 0000 0000 0110)
22 (0000 0000 0001 0110)
2064 (0000 1000 0000 0110)
2066 (0000 1000 0001 0010)
2068 (0000 1000 ©001 0100)
2070 (0000 1000 0001 0110)
2071 (0000 1000 0001 0111)
2078 (0000 1000 0001 1110)

7.5. THE ROUTING PROCESS 55
2102 (0000 1000 0011 0110)
2134 (0000 1000 0101 0110)
215G (002C 1CCO 1001 0110)
2326 (0000 1001 0001 0110)
2682 (0000 1010 0001 0110)
3004 (0000 1100 0001 0110)
61668 (0001 1000 0001 0110)
10262 (0010 1000 0001 0110)
18454 (0100 1000 0001 0110)
34838 (1000 1000 0001 0110)

These two sets of addresses have a conunon connection. Processors 6 and 2070 both
connect to 22. Thus it is possible to pass a message, for example, from processor 14 to
processor 10262 in just four steps. The router at processor 14 passes it to the router at
processor 6, which passes it to 22. From there it goes to 2070 and then to 16262.

7.5 The Routing Process

Connection Machine physical processors are gronped sixteen to a chip. There is a single
router on each chip that services all sixteen processors. Hence four of the sixteen routing
connections are internal to an individual chip. It takes a maximum of twelve steps to move
from any chip to any other chip. During message routing, the system goes through all
twelve steps. If the router on a given chip has a message whose relative address has a “1”
in the low order bit position, it sends that message on the first of the twelve steps to the
chip whose address differs in that same bit (i.e., the next chip). If the message it has has
a “0” in the low order relative address bit, the on-chip router does not send any data on
that step. The process continues through all twelve steps, with all router chips responding
in the same way.

The basic message passing instruction is send. Arguments to send specify the length of
the message and two memory fields. Within each processor, one field contains the message
data, and the other contains the address of a destination processor. Send causes all active
processors to initiate message transfers at once. The special Connection Machine routing
hardware handles the volume of messages efficiently. An individual router on a chip may
receive as many as twelve messages from other chips during a message cycle, one from each
other chip that it is connected to. It can in turn send as many as twelve messages, one
on each of the wires. If two messages need to go down the same wire, one is buffered
until the next routing cycle. If an individual router becomes extremely busy, it can defer
acceptance of any new messages from its own processors. Deferral keeps the router free to

56 CHAPTER 7. THE CONNECTION MACHINE SYSTEM

handle messages from other chips. If the chip’s buffer space still fills, it refers messages to
neighboring chips.

Simultaneous message sending introduces the possibility that the same location in the
same processor will receive two or more messages in the same cycle. The simple send
instruction gives unpredictable results in this case. Several variations of the send instruction,
such as send-with-add, deal with this possibility. If two or more send-with-add messages
arrive at the same destination, they are summed. Send-with-overwrite causes one message
to be delivered intact, discarding all other messages directed to that destination. Other
options include send-with-maz and send-with-logior.

7.6 Dynamic Reconfiguration

A processor address is all it takes to establish a link on the system. This flexibility allows
applications to reconfigure dynamically. A number of intructivns support this capability.
The my-address instruction allows processors to determine their own addresses, so they
can send them to other processcrs aud thus establish new connections. The processor-cons
instruction allows each selected processor to find another “free” processor.

Processor-cons specifies the address of a one-bit field, the “free flag.” A processor is
considered free if it has a “1” in that field. The system looks in parallel for processors with
1’s and passes to each selected processor the address of a different free processor, and at
the same time clears the free flags of those free processors.

M E T EEEnEmETEBN

Chapter 8

Looking to the Future

At one level this report s about algorithms for data level parallel computers: algorithms
for looking at the whole problem at once. But at a deeper and more important level, it is
really the story of what happened when three very creative people teamed up with a new
style of computer, the Connection Machine system. All three people saw new ways to break
through old barriers. The computer allowed them to confirm their intuition quickly and
then to build upon that intuition.

The intuitive insight behind the document retrieval algorithm is the fact that documents
contain a rich set of synonyms for their main content topics. Comparing whole documents
could eliminate the need to play guessing games with key words. The idea had never been
effectively tested because no conventional computer could execute the algorithms quickly
on large data bases. In fact, the first tests on document retrieval by whole document com-
parison were not particularly encouraging. They were run on a data base of 150 documents,
which turned out to be inadequate. When the test was widened to 1500 documents, results
were more encouraging. At the level of 15,000 documents, they were outstanding. With-
out a data level parallel computer such as the Connection Machine system, there would
have been no way to even try the approach with 15,000 documents. Test runs would have
taken days. Interaction would have been impossible. Now that it has been shown that the
algorithm works, whole new possibilities for data base system design are opening up.

The intuitive insight behind the fluid flow algorithm is the fact the behavior of fluids can
be simulated without extensive arithmetic computations. Modeling the primitive behavior
of molecule packets on a large enough scale can elicit the same macroscopic behavior as
real fluids. Tests on the Connection Machine computer suggest strongly that it does. The
result is a new and potentially important avenue of scientific investigation.

The intuitive insight behind the contour mapping algorithm is the fact that sophisticated
image processing and vision algorithms can be tested on large amounts of data with a small
amount of programming effort. The drawing of contour maps, for example, is greatly

57

58 CHAPTER 8. LOOKING TO THE FUTURE

simplified by data level parallelism, because it is not necessary to identify the contours one
by one and then traverse the perimeter of each one sequentially; instead, each pixel of the
contour map “draws itself” in parallel with all the other pixels. Instead of having to break
up each phase of the problem into smaller pieces for sequencing purposes, the programmer
can tackle it all at once. The result is smaller and simpler programs.

The revolution in data level parallel computing is here. The three algorithms described
in this report are only a beginning. But they make an important point: innovative users
are an integral part of the story. Users who are stimulated to look at old problems in new
ways. Users who revisit problems given up on as imporsible in the 60’s and 70’s. Users who
know that a simpler solution is a better solution. These are the users who will assure that
the future belongs to computers that look at the whole problem at once.

- -.-

EH Bl =ENE®Rm

Bibliography

[1]

(10]

(11]

David C. Blair and M. E. Maron. An evaluation of retrieval effectiveness for a full-text
document-retrieval system. Comm. ACM, 28(3):289-267, March 1985.

John F. Canny. Finding Lines and Edges in Images. Al Memo 720, MIT Artificial
Intelligence Laboratory, Cambridge, Massachusetts, 1983.

Michael Drumheller and Tomaso Poggio. On parallel stereo. In International Confer-
ence on Robotics and Automation, IEEE, April 1986.

U. Frisch, B. Hasslacher, and Y. Pomeau. A Lattice Gas Automaton for the Navier-
Stokes equation. Preprint LA-UR-85-3503, Los Alamos, 1985.

W. Eric L. Grimson. From Images to Surface. MIT Press, Cambridge, Massachusetts,
1981.

Samuel P. Harbison and Guy L. Steele Jr. C: A Reference Manual. Prentice-Hall,
Englewood Cliffs, New Jersey, 1984.

J. Hardy, O. de Pazzis, and Y. Pomeau. Molecular dynamics of a classical lattice gas:
transport properties and time correlation functions. Phys. Rev., A13(1949), 1976.

W. Daniel Hillis. The Connection Machine. MIT Press, Cambridge, Massacnusetts,
1985.

Guy L. Steele Jr., Scott E. Fahlman, Richard P. Gabriel, David A. Moon, and Daniel L.
Weinreb. Common Lisp: The Language. Digital Press, Burlington, Massachusetts,
1984.

Brian W. Kernighan and Dennis Ritchie. The C Programming Language. Prentice-
Hall, Englewood Cliffs, New Jersey, 1978.

David Marr. Vision. W. H. Freeman, San Francisco, 1982,

59

60 BIBLIOGRAPHY

{12] David Marr and Ellen Hildreth. Theory of edge detection. Proc. Roy. Soc. London,
B(207):187-217, 1980.

(13] K. Prazdny. Detection of binocular disparities. Biological Cybernetics, 52:93-99, 1985.

(14] James B. Salem and Stephen Wolfram. Thermodynamics and Hydrodynamics with
Cellular Automata. Internal technical report, Thinking Machines Corporation, Cam-
bridge, Massachusetts, November 1985.

[15] David S. Touretzky. Lisp: A Gentle Introduction to Symbolic Computation. Harper &
Row, New York, 1984.

[16] Patrick Henry Winston and Berthold Klaus Paul Horn. Lisp. Addison-Wesley, Read-
ing, Massachusetts, second edition, 1984.

- INL

FILMED
U-84
JTIC

